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Abstract— This paper describes a method for robust Family’. A distance measure in this family is the
real time pattern matching. We first introduce a family of  number of non-similar corresponding features be-
image 'distance measures, thglmage Hamming Distapce tween two images. Members of this family are
Family”. Members of this family are robust to occlusion, ot 15 geclusion, small geometrical transforms,
small geometrical transforms, light changes and non- . - .
rigid deformations. We then present a novel Bayesian light changes and non-rigid de_format'or_ls'
framework for sequential hypothesis testing on finite pop- ~ S€cond, we show how to quickly decide whether
ulations. Based on this framework, we design an optimal @ window is similar to the pattern with respect
rejection/acceptance sampling algorithm. This algorithm to a member of the “Image Hamming Distance
quickly determines whether two images are similgr with Family”. The trivial, but time consuming solution is
respect to a member of thelmage Hamming Distance y, -, mpyte the exact distance between the pattern
Family. We also present a fast framework that designs . . .

a near-optimal sampling algorithm. Extensive experimen- and the wmdow by going Over_a" th(? corresponding
tal results show that the sequential sampling algorithm features (the simplest feature is a pixel). We present
performance is excellent. Implemented on a Pentium 4 an algorithm that samples corresponding features
3GHz processor, detection of a pattern with 2197 pixels, and accumulates the number of non-similar features.
in 640x480 pixel frames, where in each frame the pattern The speed of this algorithm is based on the fact
rotated and was highly occluded, proceeds at only 0.022that the distance between two non-similar images
seconds per frame. - .

is usually very large whereas the distance between

Index Terms—Pattern matching, template matching, two similar images is usually very small (see Fig.

S.atttem detecltitf’”’ image Sti.mli'ﬁ”ty trr?ea_lsutrest_, Hamming 2) Therefore, for non-similar windows the sum will
istance, real time, sequentia othesis testing, compeo . .
ite hypothesis, imageqstatistics,ygayesian statigtics, ﬁ% 9“"{" extremely fast and We.WI.” be able to quickly
populations decide that they are non-similar. As the event of
similarity in pattern matching is so rare (see Fig.
2), we can afford to pay the price of going over all
. INTRODUCTION the corresponding features in similar windows. Note
ANY applications in image processing anghat the algorithm does not attempt to estimate the
computer vision require finding a particulatiistances for non-similar windows. The algorithm
pattern in an imagepattern matchingTo be use- only decides that these windows, with a very high
ful in practice, pattern matching methods must kgrobability (for example, 99.9%), are non-similar.
automatic, generic, fast and robust. The reduction in running time is due to the fact that

Pattern matching is typically performed by scanhis unnecessary information is not computed.
ning the entire image, and evaluating a distanceThe idea of sequential sampling [1] or sequential
measure between the pattern and a local rectang@aimpling a distance is not new [2]. The major con-
window. The method proposed in this paper is apptiibution in our work is a novel efficient Bayesian
cable to any pattern shape, even a non-contigudksmework for hypothesis testing on finite popula-
one. We use the notion of “window” to cover altions. Given allowable bounds on the probability
possible shapes. of error (false negatives and false positives) the

First, we introduce a family of image distancéramework designs a sampling algorithm that has
measures called thelhage Hamming Distancethe minimum expected running time. This is done
, __in an offline phase for each pattern size. An online
O. Pele and M. Werman are with the The Hebrew University of . . . .

hase uses the sampling algorithm to quickly find
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Fig. 1. Real time detection of a rotating and highly occlugeadtern.

(a) A non-rectangular pattern of 2197 pixels. Pixels nobhging to the mask are in black. (b) Three 640x480 pixel frama of fourteen

in which the pattern was sought. (c) The result. Most simitasked windows are marked in white. (d) Zoom in of the ocewes of the
pattern in the frames. Pixels not belonging to the mask atgaok.

The SEQUENTIAL algorithm proceeds at only 0.022 seconds per frame. Offlimming time - time spent on the parameterization of the
SEQUENTIAL algorithm (with P-SPRT, see Section IV-D) was 0.067 secohldge that the distance is robust to out of plane rotatiorts an
occlusion. Using other distances such as CC, Nigd; yielded poor results. In particular they all failed to fine thattern in the last frame.
We emphasize that no motion consideration was taken intouatdn computation. The algorithm ran on all windows. Fidlesimages are
available athtt p: //ww. cs. huji.ac.il/~ofirpel e/ hs/all_nmges.zip
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dow instead of 2197 needed for the exact distance
computation. On a Pentium 4 3GHz processor, it
Fig. 2. The distance of the pattern to most windows in pattepproceeds at only 0.022 seconds per frame. Other

matching is very high. A distance measure from the Image Hiagm distances such as cross correlation (CC) normalized
Distance Family was computed between the pattern and aglidi '

masked window in the video frames of Fig. 1. Above we see tfd’ 0SS correlation (NCCXI' la, y|e|ded poor results

resulting histogram. The left part of the histogram is zodrire We ~even though they were computed exactly (the com-
can see that most of the windows in the video were very far frofﬂutation took much |0nger)_

the pattern. This is a typical histogram. . . : .
P yP 9 This paper is organized as follows. Section I

is an overview of previous work on fast pattern

matching, Hamming distance in computer vision

also present a fast framework that designs a negy qequential hypothesis testing. Section Iil intro-
optimal sampling algorithm. For comparison, W§

) ces the Image Hamming Distance Family. Section
also present a framework that designs an optlrr]g;]l

S . 'BYtensive experimental results. Finally, conclusions
needs significantly fewer samples than fixed sizgs grawn in Section VII. A notation table for the

sampling. _ _ ~ rest of the paper is given in Table I.
Sampling is frequently used in computer vision,

to reduce time complexity that is caused by the
size of the image data. Our work (like work by
Matas et al. [3], [4]) shows that designing an optimd}- Fast Pattern Matching
or a near-optimakequentialsampling scheme (by The distances most widely used for fast pattern
contrast to the frequently usdiked sizesampling matching are cross correlation and normalized cross
scheme) is important and can improve speed apggkrelation. Both can be computed relatively quickly
accuracy significantly. in the Fourier domain [5], [6].

A typical pattern matching task is shown in Fig. 1. The main drawback of correlation, which is based
A non-rectangular pattern of 2197 pixels was sougbh the Euclidean distance, is that it is specific
in a sequence of 14, 640x480 pixel frames. Usirig Gaussian noise. The difference between images
the sampling algorithm the pattern was found iof the same object often results from occlusion,
9 out of 11 frames in which it was present, witlyeometrical transforms, light changes and non-rigid
an average of only 19.70 pixels examined per wialeformations. None of these can be modeled well

II. PREVIOUS WORK



with a Gaussian distribution. For a further discus- Hel-Or and Hel-Or [23] used a rejection scheme
sion on Euclidean distance as a similarity measui@ fast pattern matching with projection kernels.
see [7]-[10]. Note that although the Hamming disFheir method is applicable to any norm distance,
tance is not specific to Gaussian noise as theand was demonstrated on the Euclidean distance.
norm, it is robust to Gaussian noise (see Fig. 3)lhey compute the Walsh-Hadamard basis projec-
Normalized cross correlation is invariant to additivBons in a certain order. For the method to work fast
and multiplicative gray level changes. However, nathe first Walsh-Hadamard basis projections (accord-
ural light changes include different effects, such asg to the specific order) need to contain enough
shading, spectral reflectance, etc. In addition, wherformation to discriminate most images. Ben-Artzi
a correlation is computed in the transform domaiet al. [24] proposed a faster projection scheme
it can only be used with rectangular patterns amdlled “Gray-Code Kernels”. Ben-Yehuda et al. [25]
usually the images are padded so that their heighttended the Hel-Or pattern matching method to
and width are dyadic. handle non-rectangular patterns by decomposition
Lucas and Kanade [11] employed the spatial if the pattern into several dyadic components.
tensity gradients of images to find a good match us-Cha [26] uses functions that are lower bounds
ing a Newton-Raphson type of iteration. The methdd the sum of absolute differences, and are fast
is based on Euclidean distance and it assumes tttaitcompute. They are designed to eliminate non-
the two images are already in approximate registrsimilar images fast. The first function he suggests is
tion. the h-distance Y,—¢ | S5 (Gi(Imy) — Gi(Imy))],
Local descriptors have been used recently farere G,(Im) is the number of pixels with gray
object recognition [12]-[17]. The matching is doné&vel/ in the intensity histogram of the imagén,
by first extracting the descriptors and then matchirandr is the number of gray levels, usually 256. The
them. Although fast, our approach is faster. Ilime complexity is Of). The second function he
addition, there are cases where the local descriptstgygests is the absolute value of difference between
approach is not successful (see Fig. 7). If one knowsms of pixels) > I'm;(z,y) — 3> Ims(x,y)|. The
that the object view does not change drasticalljethod is restricted to the norm and assumes that
the invariance of the local descriptors can affetitese functions can reject most of the images fast.
performance and robustness [17]. In this work we One of the first rejection schemes was proposed
decided to concentrate on pixel values or simplyy Barnea and Silverman [2]. They suggested the
relation of pixels as features. Combining the s&equential Similarity Detection Algorithms - SSDA.
guential sampling algorithm approach with the locdlhe method accumulates the sum of absolute dif-
descriptors approach is an interesting extension fefences of the intensity values in both images and
this work. applies a threshold criterion - if the accumulated
Recently there have been advances in the fidldm exceeds a threshold, which can increase with
of fast object detection using a cascade of rejectdlr® number of pixels, they stop and retunon-
[18]-[21]. Viola and Jones [20] demonstrated thgimilar. The order of the pixels is chosen randomly.
advantages of such an approach. They achieved wtier n iterations, the algorithm stops and returns
time frontal face detection using a boosted cascasieilar. They suggested three heuristics for finding
of simple features. Avidan and Butman [21] showetthe thresholds for thé norm. This method is very
that instead of looking at all the pixels in the imagesfficient but has one main drawback. None of the
one can choose several representative pixels fauristics for choosing the thresholds guarantees a
fast rejection of non-face images. In this work wbound on the error rate. As a result the SSDA was
do not deal with classification problems but rathesaid to be inaccurate [27]. Our work is a variation of
with a pattern matching approach. Our approathe SSDA. We use a member of the Image Hamming
does not include a learning phase. The learnimigstance Family instead of thB norm. We also
phase makes classification techniques impractickdsign a sampling scheme with proven error bounds
when many different patterns are sought or whemd optimal running time. As the SSDA uses the
the sought pattern is given onlineg.in the case of norm, in each figure where the norm yields poor
patch-based texture synthesis [22], pattern matchirggults (see Figs. 1, 4, 5 and 6) the SSDA also yields
in motion estimation, etc. poor results.
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Fig. 3. Real time detection of a specific face in a noisy imaiga crowd.

(a) A rectangular pattern of 1089 pixels. (b) A noisy versidithe original 640x480 pixel image. The pattern that wagmakom the original
image was sought in this image. The noise is Gaussian withaa mkzero and a standard deviation of 25.5. (¢) The resulyém@he single
similar masked window is marked in white. (d) The occurreotthe pattern in the zoomed in image. TSEQUENTIAL algorithm proceeds
at only 0.019 seconds per frame. Offline running time - timenspn the parameterization of tlEQUENTIAL algorithm (with P-SPRT,
see Section IV-D) was 0.018 seconds. Note that although #merhing distance is not specific to Gaussian noise agtherm, it is robust
to Gaussian noise. The image is copyright by Ben Schumin asldewnloaded fromht t p: / / en. wi ki pedi a. or g/ wi ki / | mage:
Jul y_4_crowd_at _Vi enna_Metro_st ati on. j pg. Full size images are available &t:t p: / / ww. cs. huji.ac.il/~ofirpel e/
hs/al | i mages. zi p

Mascarenhas et al. [28], [29] used Wald's Septimal rejection/acceptance sampling scheme with
guential Probability Ratio Test (SPRT) [1] as tha restricted number of samples.
sampling scheme. Two models were suggested for
the random variable of the distance of the sampe Hamming Distance in computer vision

k. The first converts the images to binary and then Hamming Distance in computer vision [35]—[41]
P(k) is binomially distributed. The second assumegss ysually been applied to a binary image, ordinar-
that the images are Gaussian distributed; héh@8 jjy a binary transform of a gray level image. lonescu
IS a}lso Gaussian dllsktrlbuted. The |I.|ke|lh00d ratio isnd Ralescu’s crisp version of the “fuzzy Hamming
defined as(k) = S:}Z“@?%ZZ“&Z"QS!E?“ The SPRT gistance” [39] is an exception, where a threshold
samples both images as long aé:< A(k) < B. function is applied to decide whether two colors are
When\(k) < Athe SPRT stops and retursnilar.  sjmilar.
When A(k) > B the SPRT stops and returm®n- A comprehensive review of local binary features
similar. Let the bounds on the allowable error ratesf images and their usage for 2D Object detection
be P(false positive = 3, P(false negative = . and recognition can be found in Amit's book [35].
Wald's [1] approximation ford and B is A = 2= Amit suggests using the Hough transform [42] to
, B = %. find arrangements of the local binary features. In
There are several problems with their methodppendix Il we show how the Hough transform
Converting images to binary results in a loss afan be used to compute the Hamming distance of
information. In addition, gray levels are far froma pattern with all windows of an image. We also
being Gaussian distributed [30]-[33]. Our methoshow that the expected time complexity for each
does not assume any prior on the images. Masindow isO(|A| — E[D]), where|A| is the number
carenhas et al. assume that all similar images hadepixels in the pattern’s set of pixels ard is the
exactly the same pairwise small distance, where@hdom variable of the Hamming distance between
any two non-similar images have exactly the sanaerandom window and a random pattern. For the
large distance, an assumption that is faulty. Opattern matching in Fig. 1&[D] = 1736.64, |A| =
framework gets a prior on the distribution of image197. Thus, the average work for each window
distances as input. The classical SPRT can go osing the Hough transform i850.36, much higher
infinitely. There are ways to truncate it [34], buthan thel9.70 needed using our approach, but much
they are not optimal. By contrast, we designed aess than comparing all the corresponding pixels.




Bookstein et al. [40] proposed the “GeneralizeBinally, as a by-product, our approach returns the
Hamming Distance” for object recognition on biexpected running time and the expected error rate.
nary images. The distance extends the Hamming

concept to give partial credit for near misses. |||. | MAGE HAMMING DISTANCE FAMILY
They suggest a dynamic programming algorithm

to compute it. The time complexity i®)(|A| + Distance Family is the number of non-similar cor-
2 Imy 3 Imz), where| A is the number of pixels responding features between two images, where the

and >>/m is the number of ones in the binarydefinition of a feature and similarity vary between
image, /m. Our method is sub-linear. Another dis- . : y vary DEtwe
embers of the family. Below is a formal definition

advantage is that their method only copes with neay

misses in the horizontal direction. We suggest usir%‘d several examples.

the Local Deformationsnethod (see Section Ill) to

handle near misses in all directions. A. Formal Definition

. . . sim(Imy, Imsg, (x,y)™) — {0,1} is the similar-

C. Sequential Hypothesis Testing ity fun(ction, 1 is(foryl)qo)n-sirr{\ilar,}o is for similar,
Sequential tests are hypothesis tests in which th@ere Imq, Im, are images andx,y)™ are the

number of samples is not fixed but rather is gpatial coordinates of a feature. In all our examples
random variable. This area has been an active figldis 1 or 2. If m = 1 we are testing for similarity

A distance measure from the Image Hamming

of research in statistics since its initial developmepetween pixels. Ifm = 2 we are testing for
by Wald [1]. A mathematical review can be foundimilarity between pairs of pixels (seéfonotonic
in Siegmund [34]. Relations in Section. IlI-B for an example). We

There have been many applications of samplingually omitm for simplicity.
in computer vision to reduce time complexity that gammingDistance ,(Imy, Ims) =
is caused by the size of the image data. Howevgftr gmea sim(Imy, Ims, (x,y)™) is the Hamming
most have been applied with a sample of fixed sizgistance between the set of spatial coordinates
Exceptions are [2]-[4], [28], [29], [43]-[45]. Thegpplied to the imagesm.,Im,. Note that the
sampling schemes that were used are Wald’s SPEatial coordinates ind do not need to form a

[1] for simple hypotheses, or a truncated version @éctangular window in the image. In fact they do
the SPRT (Wthh IS not Optlmal) or estimation Oﬁot need to form a connected region.

the thresholds. The Matas and Chum method [3]

for reducing the running time of RANSAC [46] is

an excellent example of the importance of optimﬁ' Examples

design of sampling algorithms. In all following examples the function returns
There are several differences between the abdvéor true and O for false.

methods and the one presented here. The first is that

in the pattern matching problem, the hypotheses drehresholded Absolute Differerice

composite and not simple. LD be the random sim(Imy, Ims, (z,y)) =

variable of the Hamming distance between a randaiti(Im:(z,y)) — (Ima(z,y))| > p)

window and a random pattern. Instead of testing The distance is similar to Gharavi and Mills’s

the simple hypothesi® = d; against the simple PDC distance [47].

hypothesisD = d,, we need to test the composite

hypothesisD < t against the composite hypothesi$Thresholded, norm in L*a*b color spacé

D > t. This problem is solved by using a priokim(Im, Ims, (z,y)) =

on the distribution of the Hamming distance anél||L*a*b* (Im(x,y)) — L*a*b* (Ima(z,y))||2 > p)

developing a framework that designs an optimal The L*a*b* color space was shown to be ap-

sampling algorithm with respect to the prior. Theroximately perceptually uniform [48]. This means

second difference is that the efficiency of the desighat colors which appear similar to an observer are

of the optimal sampling algorithm is also taken inttocated close to each other in the L*a*b* coordinate

consideration. In addition, we present a fast algeystem.i.e. by thresholding the Euclidean distance

rithm that designs a near-optimal sampling schemmetween the two(Lx, ax, bx) vectors, the function



tests whether two color pixels are perceptually sim- Members of the Image Hamming Distance Fam-
ilar. Note that if the color is more important, we cafly have an inherent robustness to outlier noise, for
multiply the L« channel with a coefficient smallerexample, out of plane rotation, shading, spectral

than one. reflectance, occlusion, etc. Using the Hamming dis-
tance, outliers up to the image similarity threshold
“Monotonic Relations t are disregarded. Norms such as the Euclidean

add irrelevant information; namely, the difference
The features used in this distance are pairs lgtween the intensity values of such pixels and the
pixels. The pair[lm:(zy,v1), Imi(x2,72)] is con- image.
sidered similar to[Imsy(z1,y1), Ima(z2,y2)] if the The Euclidean norm is most suited to deal with
same relation holds between them. For exampféaussian noise. The difference between images of
assuming WLOG that'm, (z1,3:) > Imy(z2,vy2) the same object often results from occlusion, ge-
for all pairs of coordinate$(z1, y1), (x2,y2)] in A, ometrical transforms, light changes and non-rigid

the similarity function can be: deformations. None of these can be modeled well
sim(Imy, Ima, [(z1,11), (T2, y2)]) = with a Gaussian distribution.
§(Ima(w1,y1) < Ima(x2,y2)) Although it might seem that members of the

This distance is invariant to noises that prgmage Hamming Distance Family are not robust
serve monotonic relations. Thus it is robust tgecause the similarity function of a featusan is
light changes (see Figs. 4 and 5). The distancegshreshold function, it is in fact robust because it
equivalent to the Hamming distance on the Zabj§ 5 sum of such functions.
and Woodfill censustransform [36]. We suggest Finally, the simplicity of the Image Hamming
that for a specific pattern, a reasonable choice Bfstance Family allows us to develop a tractable
A = {[(w1,51), (x2,42)]} are pairs of indices thatgayesian framework that is used to design an opti-
correspond to edges.e. points that are spatially ma rejection/acceptance sampling algorithm. After
proximal with large intensity difference. Such pairg,e design the sampling algorithm offline, it can
are discriminative because of image smoothnessyickly determine whether two images are similar.

“Local Deformations
V. SEQUENTIAL FRAMEWORK
Local Deformationsis an extension to distance

measures of the Image Hamming Distance Fam-We first p.re.ser!t thSEQUENTIAL glgorithm that
ily which makes them invariant to local deforma@SSEsses similarity by a sequential test. Then we

tions, e.g. non-rigid deformations (see Fig. 6). Lefvaluate its performance and show how to find the
sim(Imi, Img, (z,y)™) be the similarity function optlmal para_meters for th&EQUEN'_I’IAL algorlthm.

of the original Hamming distance measure. ket F'”?‘”y we illustrate how to quickly f'nd. near-
(e2,2,) be a shift. Le{Im).(z, y) = Im(z+e,, y+ optimal parameters for th@EQUENTIAL algorithm.
£,). We denote by the set of allowable shifts. The
Local Deformationsvariant similarity function of

this Hamming distance measure is: A. TheSEQUENTIAL algorithm

sim(Imy, Ima, (z,y)™) = The SEQUENTIAL algorithm, Alg. 1, uses a de-
min.er sim(Ims, (Imz)_, (z,y)™) cision matrix M. Mlk,n] is the decision after

Brunelli and Poggio [49] used a similar techniqugamplingk non-similar corresponding features out
to make CC more robust. of a total ofn sampled corresponding features. The

decision can beNS=return non-similar S=return
similar or C=continue sampling. The last column
|A| cannot beC as the test has to end there, see the

Members of the Image Hamming Distance Fangiagram in Fig. 8. We random sample uniformly as
ily can be invariant to light changes, small deformave do not want to make any assumptions about the
tions, etc. Invariance is achieved by “plugging inhoise. Note that as we sample without replacement,
the appropriate similarity function. the algorithm always returr@milar or non-similar

C. Advantages



Fig. 4. Monotonic Relationddamming distance is robust to light changes and small outafepand in plane rotations.

(a) A non-rectangular pattern of 7569 pixels (631 edge pheils). Pixels not belonging to the mask are in black. (b) M@0 pixel image

in which the pattern was sought. (c) The result image. Allilsimmasked windows are marked in white. (d) The two founduo@nces of
the pattern in the image. Pixels not belonging to the maskrabdack. TheSEQUENTIAL algorithm proceeds at only 0.021 seconds. Offline
running time - time spent on the parameterization of #EQUENTIAL algorithm (with P-SPRT, see Section IV-D) and finding the eedg
pixels was 0.009 seconds. Note the substantial differeimcebading between the pattern and its two occurrences iintage. Also note
the out of plane (mostly the head) and in plane rotations efntlaras (the animals in the picture). Using other distangels as CC, NCC,
l2, 11 yielded poor results. In particular the closest window gs@C, i, I; was far from the maras. Using NCC the closest window was
near the right mara but it found many false positives befardirfig the left mara. The pairs that were used are pairs olpb&longing to
edges,.e. pixels that have a neighbor pixel, where the absolute iitienalue difference is greater than 80. Two pixelsg, y2), (z1,y1)

are considered neighbors if théit, distance:max(|z1 — x2|, |y1 — y2|) is smaller or equal to 2. There are 631 such pairs in the patter
Similar windows are windows where at least 25% of their pakisibit the same relation as in the pattern. Full size imagesavailable at:
http://ww. cs. huji.ac.il/~ofirpelel/hs/all_inages.zip

(b) (d)

Fig. 5. Monotonic Relationddamming distance is robust to light changes and occlusion.

(a) A non-rectangular pattern of 2270 pixels (9409 edgelppeirs). Pixels not belonging to the mask are in black. (b) 40480 pixel
image in which the pattern was sought. (c) The result image. Single similar masked window is marked in white. (d) Theusences
of the pattern in the image zoomed in. Pixels not belonginthéomask are in black. TheEQUENTIAL algorithm proceeds at only 0.037
seconds. Offline running time - time spent on the parametiéoiz of the SEQUENTIAL algorithm (with P-SPRT, see Section 1V-D) and
finding the edge pixels was 1.219 seconds. Note the conbigedifferences in the light between the pattern and the roenaes of the
pattern in the image, especially the specular reflectioménpattern. Also note the difference in the spotting of tlegdrand the difference
in the pose of the legs (the top right leg is not visible in thege). Using other distances such as CC, NGC/; yielded poor results.
In particular the closest window using CC, NCG, I; was far from the frog. The pairs that were used are pairs clpikelonging to
edges,i.e. pixels that have a neighbor pixel, where the absolute iitienalue difference is greater than 80. Two pixelse, y2), (z1,y1)
are considered neighbors if théit, distance:max(|z1 — x2|, |y1 — y2|) is smaller or equal to 5. There are 9409 such pairs in therpatte
Similar windows are windows where at least 25% of their pakisibit the same relation as in the pattern. Full size imagesavailable at:
http://ww. cs. huji.ac.il/~ofirpelel/hs/all_inages.zip



Fig. 6. Local Deformationds robust to non-rigid deformations.

(a) A non-rectangular pattern (snake skin) of 714 pixelgeBinot belonging to the mask are in black. (b) A 640x480 Igix@ge in which
the pattern was sought. (c) The result image. All similar keds(adjacent) windows are marked in white. (d) Most simdacurrence of
the pattern in the zoomed-in image. Pixels not belongingheorhask are in black. TheEQUENTIAL algorithm proceeds at only 0.064
seconds. Offline running time - time spent on the parametioiz of the SEQUENTIAL algorithm (with P-SPRT, see Section 1V-D) was
0.007 seconds. Using other distances such as CC, BCG, yielded poor results. In particular the closest window gstC, NCC,ls, [1
was far from the snake skin. SIFT descriptor matching [18p gielded poor results (see Fig. 7). The distance that wasl is thelLocal
Deformationsvariant of theThresholded Absolute Differenaistance with a threshold of 20. The group of shiftsdlis= {41, +1}, i.e.
8-neighbors. Similar windows are windows where at least 5%heair pixels (or neighbors) have dn distance smaller or equal to 20. Full
size images are available &ttt p: // www. cs. huji.ac.il/~ofirpele/hs/all_inmages.zip

(SIFT-1) (SIFT-5)

Fig. 7. SIFT descriptor matching [13] on the pattern matghim Fig. 6. The pattern in the left part of each figure is zoom¢8IFT-1)
The correspondences between the eleven SIFT descriptohe ipattern and the most similar SIFT descriptors in the an&pte that all
correspondences are false. (SIFT-5) The corresponderte®dn the eleven SIFT descriptors in the pattern and therfost similar SIFT
descriptors in the image (each one to five correspondenaggrioas a different symbol). Note that only one corresparelés true. It is
the fifth most similar correspondence of the descriptor ancharked with a circle.

after at most/A| samples. Bear in mind that it isimage similarity threshold;. Note that the optimal
possible to add more kinds of decisiéns decision matrix does not have to be computed for
The framework computes the optimal decisiodach new pattern. It should be computed once for
matrix offline. Then, the algorithm can quickly dea given prior on the distribution of the distances,
cide whether a pattern and a window are similar, desired error bounds and the size of patterns. For
if their Hamming distance is smaller or equal to thexample, if the task is finding0 x 30 patterns, then
it is enough to compute the decision matrix once.
le.g.the computation of the exact distance that reduces therrgnni

time overhead of the checks on the decision matrix entries ifs
in the algorithm). However, in practice this did not impraesults.
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k

n = #corresponding features sampled

Fig. 8. Graphical representation of the decision matdxwhich is used in theSEQUENTIAL algorithm (Alg. 1). In each step the algorithm
samples corresponding features and goes right if they amn#asior right and up if they are non-similar. If the algonthtouches a red
NS point, it returnsnon-similar, with the risk of a false negative error. If the algorithm ¢bas a greer® point, it returnssimilar, with
the risk of a false positive error. In this example, the sifehe pattern,|A| is 21 and the threshold for image similarityis 9. Note
that theSEQUENTIAL algorithm parameterized with this decision matrix regsliee least three non-similar corresponding features tametu
non-similarand at least ten similar corresponding features to resimilar.

Algorithm 1 SEQUENTIAL,, (patternwindow, A) samples (proportional to running time).
k<=0 Py (false negative = Probability of re-
for n=101to |A| do turning non-similaron similar windows.

if M[k,n] = NS then Py (false positive = Probability of return-
return non-similar ing similar on non-similar windows.

i i\eJt[t]jr’r?] ;riilg]ren We denote by ,, the event of sampling non-

. . similar corresponding features out of a total of
random sample uniformly and without replace- led ding f . "
ment (z, y)™ from A n sampled corresponding features, in any specific

A - order (for example, where the non-similar corre-

\\\ add 1 if features are non-similar . :
k k + sim(patternwindow, (z, y)™) sponding features are sampled first). Note that all
P ) T Y orders of sampling have the same probability. As

we sample without replacement we get:

B. Evaluating performance of a fixed decision map(., 1p = q)

trx (I ) (e~ =) it @2 b

In order to find the optimal decision matrix for (A —d>n—k)
the SEQUENTIAL algorithm, we first evaluate the otherwise
performance of the algorithm for a fixed decision L

matrix. The performance of the algorithm is defined
by its expected number of samples and its €rrorthe naive computation o(e;, .| D = d) for each

probabilities: k, n and d runs in O(|A|*). In order to reduce
FEy(#samples = Expected number oftime complexity to O(|A|?), we use a dynamic
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programming algorithm to compute the intermediate
sums,Qs[k,n| and Qygs(k, n] (see Eq. 2) for each Y ey Pk n]Qslk, 7]

k and n where P(D = d) is the prior on the . M(kn)=NS
distribution of the Hamming distance (see Sectioh 1 (false negative= P(D <t)
V).
t 3)
Qglk,n] =3 P(epn|D = d)P(D = d) > (e Ulk, n)Qys [k, n]
=0 Py (fal itive = ki
" @) v (false positive PD>1)
Qnslk,n] = Y. Plep,|D=d)P(D =d) (4)
d=t+1 E\ (#samples= %)
In each step thesEQUENTIAL algorithm sam- > Uk, n)(Qs[k,n] + Quslk,n])n
ples spatial coordinates of a featufe,y)” and (k,n):
adds sim(patternwindow, (x,3)™) to the sample M (k,n)€{S, NS} 5
dissimilarity sumk. Define a specific run of the (6)
algorithm as a sequence of_ random varlableé:. Finding the optimal decision matrix
s1,82,... Where s, € {0,1} is the result of

Our goal is to find the decision matrix/ that

sim(patternwindow, (z, y)™) in iteration number “~*' :
_minimizes expected number of samples given allow-

n. Let Wy [k,n] be the number of different se

quences ofsy, so, ..., s, With k ones andn — k able bounds on the error probabilities,3:

zeros which will not cause theEQUENTIAL al-

gorithm that uses the decision matri¥ to stop argr%n Ey(#sampleg

at an iteration smaller tham. Graphically (see £

Fig. 8) W[k, n| is the number of paths from the o _ (7)
point (0,0) to the point(k,n) that do not touch a Py (false negative< o

stopping point ENS. Alg. 2 computesV,, with Py (false positive < g

. ; 5
time complexity of O[A["). Instead of solving Eq. 7 directly we assign two

new weightsuw, for a false negative error event and

Algorithm 2 computel,, w, for a false positive error everite. we now look
Ulo...|4],0..]4] < 0 for the decision matrix)\/ that solves Eg. 8:
k<0 n<0
while M[k,n] = C do argmﬂ/i{nlOSiM, wp,w) St

\I][k’ n] =1 loss(M, wo, wr) = Ep(#samples + ®)
\I/[Z,:] ::Lll Py (false positiveP (D > t)w;+
for n =1 to |A| do Py (false negativeP (D < t)wy

for k=nto1ldo
if M[k,n—1] = C then
Uik, n| < V[k,n] + V]k,n — 1]
if M[k—1,n—1]=C then
Uik, n] < V[k,n]+Vk—-1,n—1]
return W

Following the solution of Eq. 8 we show how
to use it to solve Eqg. 7. We solve Eg. 8 using the
backward induction technique [50]. The backward
induction algorithm, Alg. 3 is based on the principle
that the best decision in each step is the one with
the smallest expected addition to the loss function.
In Appendix IV we show how to explicitly compute

Now we can compute (see full derivation inhe expected additive loss of each decision in each
Appendix IIl) the error probabilities and expectedtep.
number of samples explicitly using a prior on the If we find error weights,wy, w; such that the
distribution of the Hamming distanceF(D = d) decision matrix, M that solves Eq. 8 has er-
(see Section V): ror probabilities, Py, (false negative = « and
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Algorithm 3 backward(ug, w1) Algorithm 4 searchOptt, ()
for & =0to |A| do ming, < 0 maxy, < 5

. aP(D<t)
Mk, |A|] < arg mingegisiore (NS} : 4]
EladdLossdecision |k, | A|] ?églgé;: 0 maxw, < 55055
for n = ‘A| —1to0do mid - mingyg + maxa,
for k=0ton do . d“’o o minu, $max,,
M[k‘, n] < arg mindeoisior‘e{NSSC} My 2 . .
E[addLOS$deCiSi0Ij|k:, n] M <= backwar((im1dw0, mldwl)
return M computel ,

Py (false negative<

1
Py (false positiveé = 3, then we have also found oz > (k) Yarlk,nfQs(k,n]
the solution to the original minimization problem  MEm)=NS
Eq. 7. See Appendix V, Theorem 1 for the proof. Py (false positivg <

In order to find the error weightsy,, w; which ﬁ X k) Yalk, n]Qns[k, 0]
yield a solution with errors as close as possible to M (k,n)=$
the requested errorsy(for false negative and’ if Py (false negative> o then
for false positive) we perform a search (Alg. 4). min,,, < mid,,
The search can be done on the 2D rectangjec else
0, sprp=5) » w1 € [0, 5prp=5) as it is guaranteed MaXy, <= Midy,

that there is a solution in this rectangle with small it p, (false positive > 3 then
enough errors (see Appendix V, Theorem 2). Note min,, < mid,,
that increasing the error weighig andw, can only else
increase the expected number of samples; thus there 1,5y« mid,,
is no need to search beyond this rectangle. ,

Alg. 4 returns a decision matrix with minimum Until [Py (faise negative—a|+|Pu (false positivg— | < =
expected number of samples compared to all othef®turn M
decision matrices with fewer or equal error rates
(see Appendix V, Theorem 1). However, as the
search is on two parameters, the search for theOur goal is again to find the decision matrix that
requested errors can fail. In practice, the searnfinimizes the expected running time, given bounds
always returns errors which are very close to then the error probabilities (see Eq. 7). We present
requested errors. In addition, if we restrict one @ near-optimal solution based on Wald’'s Sequential
the errors to be zero, the search is on one parameRegbability Ratio Test (SPRT) [1]. We call this test
hence a binary search returns a solution with errdtse “Prior based Sequential Probability Ratio Test”,
as close as possible to the requested errors. If AR-SPRT.
4 fails to return a decision matrix with errors close The classical SPRT [1] is a test between two
to the requested errors, an exhaustive search of §a@ple hypotheses,e. hypotheses that specify the
error weights,wy, w; with high resolution can be population distribution completely. For example, let
performed. D be the random variable of the Hamming distance

between a random window and a random pattern.

D. Finding a near-optimal decision matrix using PA test of simple hypotheses i® = d, against
SPRT D = d,. However, we need to test the composite

Above, we showed how to find the optimal debhypothesisD <t against the composite hypothesis
cision matrix. The search is done offline for eack > t. This problem is solved by using a prior on
combination of desired error bound, size of patteihe distribution of the Hamming distanc®.
and prior and not for each sought pattern. However,We now define the likelihood ratio. We denote by
this process is time consuming. In this section we , the event of sampling non-similar correspond-
describe an algorithm that quickly finds a neaing features out of a total of sampled correspond-
optimal decision matrix. ing features, in any specific order (for example,
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where the non-similar corresponding features atemplexity andO(|A|) memory complexity. The
sampled first). Note that all orders of sampling haxamputation of the line of acceptance is similar.
the same probability. The likelihood ratid(e;,,) For each number of samples, we test whether
is (see full derivation in Appendix VI): the height of the point of rejection can stay the
same as it was for the last stage, or whether it
should increase by one. For this purpose we need
) to compare the likelihood ratio with the threshold
B. In order to compute the likelihood ratio fast,
®) we keep a cache of the probability of being in
The P-SPRT samples both images as long age next rejection point and that the true distance
A < Mern) < B. When(ey,,) < A the P-SPRT js equal tod. The cache is stored in the array
stops and returnsimilar. WhenA(ey,,) > B the P- p(¢, .. D = d) for each distancel. Thus its size
SPRT stops and returmon-similar. Let the bounds g |A| + 1. In Appendix VI we describe the explicit
on the allowable error rates be(false positivg = derivation of the cache initialization and update
3, P(false negative= o. Wald’s [1] approximation rules. For numerical stability, the cache in Alg. 5
for A andBis A= ;£ andB = =2 can be normalized. In our implementation we store
The near-optimal character of the SPRT waB(D = d|e,,) instead of P(D = d, ey.,).
first proved by Wald and Wolfowitz [51]. For an
accessible proof see Lehmann [52]. The proof EMgorithm 5 computeRejectionLine{|, «, 3, P[D])
for simple hypotheses. However, replacing the like- B — 15
lihood ratio in the Lehmann proof with the prior
based IiKeIihood ratiq (see Eq: 9) shows that therejectionLinéO] -1
P-SPRT is a near-optimal solution to Eq. 7 \\ Try (1,1) as first rejection point
The SPRT and P-SPRT are near-optimal andk<: 1
not optimal, because of the “overshoot” effeict,. or d=0to|A| do
because the sampling is of discrete quantities, anJ Plern, D =d) < L P(D = d)
finding a P-SPRT with the desired error rates may. :’"1’ to || do A]
not be possible. In our experiments Wald’s approxi- likelihoodRatio

)\( ) = P(D S t) Z:‘djilt—i-l P(ekm, D= d)
€kn) = P(D >t) Yo Plegn, D =d)

\\ Never reject after 0 samples

mations gave slightly lower error rates and a slightly po<n [ S, Plexn.D=d)

larger expected sample size. An improvement can be (P(D;t)) Zt_MP(ek - D=d) )

made by searchingl andz for an error closer to the if IikelihoodRat|o>dl:5’O then

desired error bound. This can be done with A|?) for d =0 to |A| do

time complexity and)(|A|) memory complexity for Pegn, D = d) <

each step of the search. However, we have no bound P(@w” D = d)P(next0|ex,,, D = d)

on the number of steps that needs to be made in the g|ge
search. In practice, Wald approximations give good for d =0 to |A| do

results. _ N o Plegn, D =d) <
The search for the optimal decision matrix is P(epn, D =d)P(nextl|e,,, D = d)
equivalent to a search for two monotonic increasing Eek+1 ’

lines. First is the line of acceptance (see Fig. 8 rejectionLinén] < k
greenS line); i.e. if the SEQUENTIAL algorithm  return rejectionLine
touches this line it returnsimilar. Second is the
line of rejection (see Fig. 8 reNSline); i.e. if the
SEQUENTIAL algorithm touches this line it returns _
non-similar Note that unlike the optimal solution,E- Implementation note
the P-SPRT solution cannot contain more than twoThe fastest version of our algorithm is a version
kinds of complementary decisions (in our caseof the SEQUENTIAL algorithm that does not check
returningsimilar or returningnon-similai). its position in a decision matrix. Instead, it only
We now describe an algorithm (Alg. 5) thathecks whether the number of non-similar features
computes the line of rejection i®(|A|*) time sampled so far is equal to the minimum row number
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in the appropriate column in the decision matrix For each image we computed the set of distances
that is equal toNS In other words, we simply between two patterns (each a not too smooth ran-
check whether we have only touch the upper rdoemly chosen 2D window from the image before the
jection line (see Fig. 8 red line oNS. If we addition of the noise) and a sliding window over the
finish sampling all the corresponding features amwbisy image. The prior that was used is a mixture
we have not touched the upper line, the window rmodel of this histogram and a uniform prior (with
unquestionably similar. In fact, the exact Hamming very small probability for uniformity). We used a
distance is automatically obtained in such casesixture model as we had almost no observations of
There is a negligible increase in the average numtsnall distances.

of samples, as we do not stop on similar windows Fig. 9 shows that priors of the same Hamming
as soon as they are definitely similar. However, tltkstance for different pattern sizes are similar. Fig.
event of similarity is so rare that the reduction iA0 shows that as the distance measure becomes
the running time of processing each sample, redugesre invariant, the distances are smaller.

the total running time.

1
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The proposed frameworks are Bayesiae,they = o

use a prior on the distribution of the distances Oz
between two natural image$,(D = d). The prior ®  3-Hamfing Oistance”
can be estimated, offline, by computing the exact (@) (b)
distance between various patterns and window: 1
Another option is to use a non-informative prior, os
i.e.a uniform prior in which the probability for each gm-ﬁ
possible distance is equal. Fig. 9 and Fig. 10 showz °4
that the true distribution of distances is not uniform. °2

[0}

0 200 400 600 800
d=Hamming Distance

Nevertheless, Fig. 17 shows that even though w % sg 000 1500 2000 1000 2000 _ 3000
i . A i d= g Distance d=Hamming Distance
use an incorrect (uniform) prior to parameterize © (d)

the algorithm, we obtain good results. It should

be stressed that other fast methods assume CerE’ . Estimateq cumulative P.DFs.of pr!orgTdfreshoIded Absolute
.. . ifferenceHamming distance with pixel similarity threshold equal 20

characteristics of images. For example’ Hel-Or ar@ﬁfls with intensity difference greater than 20 are cdestd non-

Hel-Or [23] assume that the first Walsh-Hadamasinilar) for patterns size: (a)5 x 15 (b) 30 x 30 (c) 45 x 45 (d)

basis projections (according to their specific orde@? x 60. Note that the shapes of the priors are similar.

contain enough information to discriminate most

images. Mascarenhas et al. [28], [29] assume that

images are binary or Gaussian distributed. In ad- VI. EXPERIMENTAL RESULTS

dition, they assume that all similar images have The proposed frameworks were tested on real

exactly the same pairwise small distance, while athages and patterns. The results show that the

two non-similar images have exactly the same largeQUENTIAL algorithm is fast and accurate, with

distance. By explicitly using a prior our method i®r without noise.

more general. Recall that there are two kinds of errors: false

For each distance measure and pattern size, mapative (the event of returningon-similar on a

estimated the prior using a database of 480 natusahilar window), and false positive (the event of

images. First, outlier noise was added to each imageturningsimilar on a non-similar window). A win-

To simulate such noise we chose a different imageduw is defined as similar to the pattern if and only if

random from the test database and replaced betwée®m Hamming distance between the window and the

0% to 50% (the value was chosen uniformlypattern is smaller or equal to the image similarity

with replacement, of the original image pixels withhreshold,t. Note that in all the experiments (Figs.

pixels from the different image in the same relativé, 3, 4, 5 and 6) the similar windows are also

position. visually similar to the pattern.
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os os positive error rate was 0%. The false negative error
Soe Soe rate was 0.28%. Note that due to image smoothness,
§04 §04 there are several similar windows in each frame
" s " s near the sought object. The errors were mostly due
0 0 to missing one of these windows. Although we
0 1000 2000. 3000 0 1000 2000. 3000 - . . .
d=Hamming Distance d=Hamming Distance use an incorrect (uniform) prior to parameterize
(@) (b) the algorithm, we obtain excellent results. Other
1 1 distances such as cross correlation (CC), normalized
o8 o8 cross correlation (NCCY,, l,, yielded poor results
vioe vioe even though they were computed exactly (the com-
Lo g 04 putation took much longer).
o2 o2 More results are given in Figs. 3, 4, 5 and 6. All
% igo | 2009 5000 % igo 2000 3000 of these results are on 640x480 pixel images and use
() (d) the SEQUENTIAL algorithm that was parameterized

o 10, Estimated ative PDES oriors Hireshalded with P-SPRT (see Section 1V-D), a uniform prior
1g. . Stimated cumulative S priors airesnoldaeds norm - 0

in L*a*b color spaceHamming distance fo60 x 60 patterns, with and false negative errf’r b(.)und of 0.1%. Th.ese
pixel similarity threshold equal: (a) 100 (b) 300 (c) 500 ()00. results are also summarized in Table 1l. Comparison

Note that as the distance measure becomes more invariaift §wi of the results using the estimated prior and the
higher pixel similarity threshold), the distances are $emal unif%rm prior is given in Fig. 11.

Q
o
£ 50 )
.. A ] 5 1.6%
We set the false positive error bound to zero inall ‘3‘2 S
. . . . (O]
experiments. Setting it to a higher value decreases 5 € oow
the running time mostly for similar windows. As g 10 % 0.4%
it is assumed that similarity between pattern and g o5-LLELLLR " oow=lAlalalal
image is a rare event, the speedup caused by a ® Fig. Fig.

higher bound on the false positive is negligible. We @) (b)

set the false negative error bound to 0.1i%; out

of 1000 similar windows, only one is expected to be B.. o O _

classified as non-similar. Note that this small error ™ estimated prior uniform prior

rate enables the large reduction in the running timmg. 11. Comparing optimal parameterization of $EQUENTIAL

A typical pattern matching task is shown in Fig. o orm. ariar Il e e o ol e e

A non-rectangular pattern of 2197 pixels was sougiimber of features sampled per window was slightly smalligh w

in a sequence of 14, 640x480 pixel frames. V\V@e uniforn_1 prior. Howevgr, in (b) the error rate was highéthvihe
searched for windows with ahresfiolded Absoluteo P"or Athaugh vgher the eror ate was st iy sl
Difference Hamming distance lower or equal t@yood.

0.4 x 2197, i.e. less than 40% outlier noise such as

out of plane rotation, shading, spectral reflectance,Note that the parameters (pixel similarity thresh-
occlusion, etc. Two pixels were considered nomld, p and relative image similarity threshol%)
similar if their absolute intensity difference wasre the same for each kind of distance. These param-
greater than 20j.e. p = 20. The SEQUENTIAL eters were chosen as they yield good performance
algorithm was parameterized with P-SPRT (see Sdor images experimentally. They do not necessarily
tion IV-D), a uniform prior and false negative errogive the best results. For example, on Fig. 3, using
bound of 0.1%. Using the parameterizeéHQUEN Thresholded Absolute Differeneeamming distance
TIAL algorithm, the pattern is found in 9 out of 1with pixel similarity thresholdp equal 100 and the
frames in which it was present, with an average ohage similarity threshold; equal 0, theSEQUEN

only 19.70 pixels examined per window instead afiaL algorithm ran only 0.013 seconds. The average
2197 needed for the exact distance computation. @amber of pixels examined per window was only
a Pentium 4 3GHz processor, detection of the p&-85 instead of 1089 needed for the exact distance
tern proceeds at 0.022 seconds per frame. The fateenputation. The false negative error rate was 0%.
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Another parameter that can be tuned is which pairse Outlier noise was added to the imaden. To

of pixels should setd contain when we use the
Monotonic RelationgHamming distance. In all the
experiments that use this distance, the pairs that
were used are pairs of pixels belonging to edges,
pixels that have a neighbor pixel, where the absolute
intensity value difference is greater than 80. In all

the experiments (except the experiment in Fig. 5)«

two pixels are considered neighbors if they are in
the sameb x 5 neighborhood. In the experiment
in Fig. 5, two pixels are considered neighbors if

simulate such noise we chose a different image
at random from the test database and replaced
between 0% to 50% (the value was chosen
uniformly), with replacement, of the original
image (.e. Im) pixels with pixels from the
different image in the same relative position.
The pattern was sought for in the noisy image,
using the parameterizedEQUENTIAL algo-
rithm or the parameterizediXxED_SIZE algo-
rithm.

they are in the samel x 11 neighborhood becaus§p, gach test the false negative error rate and the av-

pairs in the5 x 5

neighborhood did not describ&yage number of pixels examined per window were

the pattern well. Thus, all parameters can be tunggicyjated. Overall, the results can be summarized
for a specific pattern matching task. However, oufs ¢sl10ws:

work shows that for each of the proposed members
of the Image Hamming Distance Family there is a
standard set of parameters that usually yield good
performance.

To illustrate the performance of Bayesian sequen-
tial sampling, we also conducted extensive random
tests. The random tests were conducted mainly to
illustrate the characteristics of thBEQUENTIAL
algorithm and to compare its parameterization meth-
ods.

A test database (different from the training
database that was used to estimate priors) of 480
natural images was used. We consider similar win-
dows as windows with a Hamming distance smaller
or equal to 50% of their sizes.g.a 60 x 60 window
is considered similar to &0 x 60 pattern if the
Hamming distance between them is smaller/equal
to 1800.

For comparison we also developed an optimal
fixed size sampling algorithnFIXED_SIZE (see Ap-
pendix I). Each test of th&IXED_SIZE algorithm
or the SEQUENTIAL algorithm in Figs. 15, 16 and
17 was conducted using a different combination of
members of the Image Hamming Distance Fam-
ily and different sizes of patterns. For each such
combination a prior was estimated (see Section
V). In order to parameterize theixeD_sIzE and

1) Even with very noisy images thBEQUEN

TIAL algorithm is very fast and accurate.
For example, the average number of pixels
sampled for pattern matching o060 x 60
patterns with additive noise of up to 20 (each
pixel gray value change can range from -20 to
+20) and outlier noise of up to 50% was only
92.9, instead of 3600. The false negative error
rate was only 0.09% (as mentioned above,
the false positive error rate bound was always
0%).

The SEQUENTIAL algorithm is much faster
than therIXED_SIZE algorithm, with the same
error rates. In addition, usually threEEQUEN
TIAL algorithm is less sensitive to incorrect
priors (see Fig. 15).

3) The performance of the near-optimal solution,

P-SPRT, is good (see Fig. 16).

4) The average number of features examined

per window is slightly smaller with the uni-
form prior. However, the error rate is higher
(although still small). Thus, there is not a
substantial difference in performance when
using an incorrect (uniform) prior (see Figs.
11,17).

To further illustrate the robustness of the method

the SEQUENTIAL algorithms, we used either theyve conducted another kind of experiment. Five im-

estimated prior or a uniform prior.

age transformations were evaluated: small rotation;

Each test of the parameterized algorithms wasnall scale change; image blur; JPEG compression;
conducted by performing 9600 iterations (20 timesnd illumination. The names of the datasets used

for each image) as follows:

arerotation; scale blur; jpeg andlight respectively.

« A random not too smooth 2D window pattermhe blur, jpeg and light datasets were from the
was chosen from one of the imagds;,, from Mikolajczyk and Schmid paper [14]. Our method is

the test database.

robust to small but not large geometrical transforms.
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TABLE I
SUMMARY OF FIGURE RESULTS

Fig. (a) (b) () (d) (e) (f) (9)
Distance |A| = Max False Average Offline  Online
type Set Diff Negative Features Time Time

Size (%) (%) Sampled (secondsjfseconds)

1 20TADY 2197 40 0.28 19.70 0.067 0.022

3 20TADW 1089 40 1.68 12.07 0.018 0.019

4 MR® 631 25 0.30 35.28 0.009 0.021

5 MR® 9409 25 0.45 39.98 1.219 0.037

6  LD-20TAD® 714 5 0.20 16.98 0.007 0.064

(a) Distance types:

1) 20TAD - Thresholded Absolute Differencaith thresholdg) of 20.
2) MR - Monotonic Relations
3) LD-20TAD - Local Deformationsvariant of Thresholded Absolute Differenceith thresholdg) of 20.

(b) Size of the set of spatial coordinates of features,number of pixels inThresholded Absolute Differenclistances, or number of pairs
of pixels in Monotonic Relationgddamming distance.

(c) Maximum percentage of pixels, or pairs of pixels, that te different in similar windows. For example, in Fig. 1, 8anwindows
Hamming distance is less tharis)2197 = 878.

(d) The false negative error rate (percentage of similardaivs that the algorithm returned as non-similar). For eXxamip Fig. 1, on
average out of 10000 similar windows, 28 were missed. Naa¢ dine to image smoothness, there were several similar wsdo each
image near each sought object. The errors were mostly duasging one of these windows.

(e) Average number of pixels sampled Thresholded Absolute Differenalistances, or average number of pairs of pixels sampled in
Monotonic Relationddamming distances.

() Running time of the parameterization of ts&€QUENTIAL algorithm. In addition, inMonotonic Relationglistances it also includes the
running time of finding the pairs of pixels that belong to esige

(g9) Running time of pattern detection using theQUENTIAL algorithm, where each image is 640x480 pixels in size.

Thus, it did not perform well on the geometricabnly the window with the minimum distance as
changes datasets from the Mikolajczyk and Schistmilar, because we knew that the pattern occurred
paper [14]. We created two datasets with smaihly once in the image. TheEQUENTIAL algorithm
geometrical transforms: scaledataset that containswas parameterized using P-SPRT (see Section IV-
22 images with an artificial scale change from 0DB) with input of a uniform prior and a false negative
to 1.1 in jumps of 0.01; and aotation dataset error bound of 0.1%. We repeated each search of a
that contains 22 images with an artificial in-planpattern in an image 1000 times.
rotation from -10 to 10 in jumps of T (see for  We defined two new notions of performance: miss
example Fig. 14). detection error rate and false detection error rate.
For each collection, ten rectangular patterns wefs we know the true homographies between the
chosen from the image with no transformation. Thenages, we know where the pattern pixels are in
pairs that were used in the set of each pattern wehe transformed image. We denote a correct match
pairs of pixels belonging to edgese. pixels that as one that covers at least 80% of the transformed
had a neighbor pixel, where the absolute intensipattern pixels. A false match is one that covers
value difference was greater than 80. Two pixeliess than 80% of the transformed pattern pixels.
(x2,y2), (z1,y1) are considered neighbors if theilNote that there is also an event of no detection
l distance:max(|z; — xof, |y1n — y2|) is smaller at all if the SEQUENTIAL algorithm does not find
or equal to 2. We searched for windows with any window with aMonotonic Relationgiamming
Monotonic RelationsHamming distance lower ordistance lower or equal t0.25 x |A|. The miss
equal t00.25 x |A]. In each image we consideredietection error rate is the percentage of searches
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of a pattern in an image that does not yield a Miss Detection Rate M 100% [ <1% [J 0%
correct match. The false detection error rate is the

: : ool | | | | | | [l [ [ [ |
percentage of searches of a pattern in an image £ :EEEEEE: 00 AEEEEEE
that yields; a false match. Note that in the randqm o |
tests that illustrated the performance of the Bayesian - BB EEBEEEEREEEEE

sequential sampling, it was not possible to use these §$===IDDED%%%EDD HEEEE%
. ' 2 cHEEEN_ 0000 m | [ [ [

error notions. In these tests we used a large number oS -EEEEEE ] | T

of patterns that were chosen randomly, thus we 105@(%9999%5505515102 JTTQFOBH%

could not guarantee that the patterns did not occur Eacdale

more than once in these test images.

In the_light andj_peg tests,_the performance was 5 ;====§gggggggggggg====
perfect; i.e. 0% miss detection rate and 0% false =R |||
detection rate. In thévlur test, only one pattern S
was not found correctly in the most blurred image = 3======99EEEEE99======
(see Fig. 14). The miss detection rate and false £ :EEEEEEE 0 AEEEEEE
detection rate for this specific case was 99.6%. In all %%IEEEEEEEEEEEEEEE&EE&.

-10°  -8° -6° -4° 2° 0° 2° 4° 6° 8° 10°

other patterns and images in thiir test, the miss ratation
detection rate and false detection rate was 0%. In %a)

the scaletest, there was Only one pattern with falsﬂg. 12. (a) Miss detection error rates on thealetest. (b) Miss
detection in two images with scale 0.9 and 0.91. Hatection error rates on thetation test.

the rotation test, there was only one pattern with
false detection in images with rotation smaller than
-2° or larger than +2 Miss detection rates in the
scaleandrotationtests (see Fig. 12) were dependent
on the pattern. If the scale change or rotation was
not too big, the pattern was found correctly.

The average number of pair of pixels that the
SEQUENTIAL algorithm sampled per window was .
not larger than 45 in all of the above tests. The ° JPEG compression level
average was 29.38 and the standard deviation WS 13 average number of pairs of pixels that tlEQUENTIAL
4.22. In general, the number of samples decreas@rithm sampled per window in trpeg test.
with image smoothness;g.it decreased with image
blur, lack of light and JPEG compression (see
for example Fig. 13). Note that thBEQUENTIAL VIl. CONCLUSIONS

algorithm using theVlonotonic Relationsiamming  Thjs paper introduced the “Image Hamming

distance stops as soon as there are not enough §98ance Family”. We also presented a Bayesian

pairs of pixels in the same spatial position as lamework for sequential hypothesis testing on fi-
the pattern. Smoothness decreases the numberpf honylations that designs optimal sampling al-

edge pairs of pixels; thus it decreases the. averggiiithms. Finally, we detailed a framework that
number of samples that tlEEQUENTIAL algorithm  qickly designs a near-optimal sampling algorithm.
samples. We showed that the combination of an optimal or
Finally, Table Ill compares the running time of near-optimal sampling algorithm and members of
the two kinds of offline phasese. it compares the the Image Hamming Distance Family gives a robust,
running time of finding the optimal decision matrixeal time, pattern matching method.
(see Section IV-C) with the running time of find- Extensive random tests show that thEQUEN
ing the P-SPRT (near-optimal) decision matrix (seeAL algorithm performance is excellent. Tlse-
Section IV-D). Thus finding the P-SPRT decisioQUENTIAL algorithm is much faster than the
matrix is an order of magnitude faster. All runs wereiXeED_SIZE algorithm with the same error rates. In
conducted on a Pentium 4 3GHz processor. addition, theSEQUENTIAL algorithm is less sensi-

#avg samples
5 38 & 8 &

[N
o
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TABLE Il
OFFLINE RUNNING TIME COMPARISON
|A| - features’ coordinates set size 500 1000 1500 2000 2500 3000
Offline P-SPRT (seconds) 0.005 0.018 0.042 0.075 0.14 0.17
Offline optimal (seconds) 7.510 49.220 154.520 653.890 2M23504.97
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(a) The single false detection event onthe test. (b) An

example of detection on thetation test. The image is%atrtificially
in-plane rotated.
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tive to incorrect priors. The performance of the neall-s]
optimal solution, P-SPRT, is good. It is nhoteworthy{9]
that performance using an incorrect (uniform) prior
to parameterize theEQUENTIAL algorithm is still 10
quite good.

The technique explained in this paper was dgq;
scribed in an image pattern matching context. How-
ever we emphasize that this is an example ap |1i§]
cation. Sequential hypothesis tests on finite popula-
tions are used in quality contrag.Q.[53]) , sequen-
tial mastery testing€.g. [54], [55]) and possibly
more fields. Thus the method can be used as is'td
produce optimal sampling schemes in these fields.
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APPENDIX |

FIXED SIZE FRAMEWORK FE, ..(#examined featurgs=

We first present therIXED_SIZE algorithm that n + P(compute exagt|A| — n) =
tests for similarity using a fixed size sample. Then w1

we evaluate its performance. Finally we show how p, + %" (Z) (Qslk,n] + Qnslk,n])(JA| — n)

to find the optimal parameters for tlReXED_SIZE k=l+1

algorithm. (12)

A. TheFIXED_SIZE algorithm C. Finding optimal parameters u, n for the algo-
rithm

The FIXED_SIZE algorithm has threshold param-
etersl, v and a fixed sample size The framework  We first find optimal thresholdg « for a given
computes optimall,u and n offline. Then, the sample sizep. Our goal is to minimize the expected
algorithm can quickly decide whether a pattern aritimber of examined features given bounds on the
a window are similari.e. if their Hamming distance error probabilities, 3
is smaller or equal to the image similarity threshold,

L. arg min £, (#examined featurgs
The algorithm samples corresponding features bu
from the pattern and the window, computes their s.t:
Hamming distance and decides according to the P, ,(false negative< « (13)

result whether to retursimilar, non-similar or to

: P, ,(false positive <
compute the exact distance.

Fixed number of samples

Algorithm 6 FIXED_SIZE,, , ((pattern,windowA) P,..(false negative (Eq. 10) monotonically de-
k<=0 creases with the threshold (the number of non-
for i =1 ton do negative summands decreaseB), (false positive
random sample uniformly and without replacefEq. 11) monotonically increases with the threshold
ment(x,y)™ from A [ (the number of non-negative summands increases).
k < k + sim(patternwindow, (z,y)™) E, .(#examined featurgs(Eg. 12) monotonically

if £ <1 then decreases with the thresholdand monotonically
return similar increases with the threshold Thus, we want to

if k> wu then be as large as possible, andto be as small as
return non-similar possible.

return  (HammingDistance ,(patternwindow)) < ¢ The algorithm that chooses the optimal Alg.

7, starts by taking: = n + 1 and decreases it until
P, ,(false negativeis too high. The algorithm that

) . chooses optimal, Alg. 8 starts by taking = —1
B. Evaluating performance for fixed parametergnq increases it untiP,, (false positive is too high.

l,u,n

The performance of the algorithm is defined by itslgorithm 7 optu(n, ¢, o, P)
expected number of examined features and its erfor; <= (
probabilities. The computation is similar to the one ,,C'k «< 1 {The current n chooselk

in the SEQUENTIAL algorithm (see Section IV): for k — n to 0 do
P,.»(false negative= Z’f:;((g) <St[) 1 (10) o o then
L (o nCk < nCk x (7=557)
P, »(false positivg = k=0 (k)QNS [k, 7] (11) return k

P(D >t)
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Algorithm 8 otp.l(n, ¢, 3, P) p = Pixel similarity threshold of the

err <=0 Thresholded Absolute Differencelam-
nCk < 1 {The current n choose}k ming Distance.
for k=0 ton do H = The Thresholded Absolute Difference
err < err + %ﬁs[m Hamming Distance Mapi.e. H[r, ] is
if err > (3 then the Thresholded Absolute Differenetam-
return k£ —1 ming Distance between the pattern and the
nCk <= nCk x (Z—I]f) window of the image/m whose top left
return k pixel is [r, c].

Algorithm 9 HoughTAD(pattern,imagg)
In order to find the optimabl we compute optimal L[0...255] < empty list of indices.
l,u and the expected number of examined featuresfor (z,y) € A do
for eachn = 1...]A|. Finally, we choose the for g = (patterriz, y] —p) to (patterriz, y] + p)
that minimizes the expected number of examined do
features. Note that the search can be terminated L[g].insert[z, y])
as soon as the current minimum of the expectedH[0... R;,,,0...C},] < |A]

number of examined features is smaller than for r =1 to Ry, do
The intermediate sum8&g[k,n] and Qyslk,n] for c=1to Cy,, do
(see EqQ. 2) are computed for all possildleand for it — (L[imagér, c]].begin to
n with a dynamic programming algorithm with a (L[imagér, c||].end do
time complexity ofO(|A|3). The algorithms that H[r—it.r,c—it.c] < Hlr—it.r,c—it.c]—1

compute optimal, » for eachn (Algs. 8, 7) have
a time complexity of O[[). These algorithms run ¢ st stage of Algorithm 9 which computes
a maximum of |4| times. Thus, finding optimal y,q array of lists, L has a time complexity of

n,l,u has a time complexity of Q)A_F’). It should be |Alp). The second stage which computes the
noted that the search for the optimal parameters, mming distance map, H has an expected time

done offline. The user can employ theXED_SIZE : B
o oo wi e s o 5P SO = HD)). v
quickly detect patterns in images. tance. Total expected time complexity (Y| A|p +
RinCrn(|A|— E[D])). Average expected time com-
APPENDIX I plexity per window isO(=22— + |A| — E[D)).

CrmRim
HOUGH TRANSFORM COMPUTATION OF Since usually 72— is negligible the average
HAMMING DISTANCE

expected time éorﬁplexity per window 8(|A| —
For simplicity we show how to use the HoughZ[D])
transform [42] to compute thEhresholded Absolute

Difference Hamming Distance (see Section IlI-B) APPENDIX I

between a pattern and all windows in a 256 gray COMPUTATION OF PROBABILITIES OF THE

level image. The generalization to other members SEQUENTIAL ALGORITHM

of the Image Hamming Distance Family is easy. We List of symbols:

also analyze its time complexity. « M = SEQUENTIAL algorithm decision matrix.

List of symbols: M[k,n] is the algorithm decision after sam-

A = Set that contains spatial coordinates pling £ non-similar corresponding features out
of pixels.|A| is the size of this set. of a total ofn sampled corresponding features.
Ry, = Number of rows in large image. The decision can béNS=return non-similar,
CTrm = Number of columns in large image. S=returnsimilar or C=continue sampling. See
L = A 256 array that contains lists of all the graphical representation in Fig. 8.

pixel coordinates in the pattern that are « D = Random variable of the Hamming dis-
similar to a specific gray value. tance.
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|A|

t = Image similarity threshold,e. if the Ham- 1 )
=Py L 2 VknlPlenn D =d)

ming distance of two images is smaller or

equal tot, then the images are considered ’ tHM((Z,’Z))':s
similar. Otherwise, the images are considered (27)
non-similar. 1 4]
e Wylk,n] = Number of paths from the point = pp=y) > Ykl > Plekn, D =d)
(0,0) to the point(k,n) that do not touch a s =
stopping point § NS in Fig. 8 on page 10. (28)
. e;,= The event of samplingt non-similar B 1
corresponding features out of a total of P> >, Yk niQyslkn] (29)
sampled corresponding features, in any spe- MEZ,’ZLS
cific order (for example, where the non-similar
corresponding features are sampled first). Notg;  rssampless (30)
that all orders of sampling have the same ]
probability. See Eg. 1 on page 10. =" Eul#samplesD = d] (31)
o Qglk,n|, Qnglk,n] = Intermediate sums de- d=0
fined in Eg. 2 on page 11. 4]
=> > U[k,n]P(exn, D =d)n  (32)
d=0 (k,n):
M(kn)e{S,NS}
Py (false negative (14) N (;n): ik, n(S2s [k, n] + Ok, nDn (33)
= Pys(returnnon-similatimages are similgr (15) M(k,n)e{S,NS}
= Pys(returnnon-similafD < ¢) (16)
|A|
= Z Py (returnnon-similar D = d|D < t) (17) APPENDIX IV
d=0 COMPUTATION OF EXPECTED ADDITIVE LOSS IN

1 THE BACKWARD INDUCTION ALGORITHM

t
=———— % Py(returnnon-similar D = d) (18) )
P(D<t) ; Let w; and w, be the loss weights for false
1 t positive error and false negative error respectively.
“PD<h > > UknP(ern, D=4 The expected additive loss for each decision given
B i, that we sampled: samples, out of whictk were
(19) non-similar is:
t

= @ Z \Il[k,n]zp(ek,n,D:d)

d=t+1

EladdLos$S)|k,n] = P(D > tlekn)w: (34)
M(ngJ)LINS = P(D >t,exn)
(20) R TP S (3%)
__ Al P(D=d
= B0 <7 (kz)- Uk, n|Qgslk, n] (21) _ Zd_j_ﬂp E) = 7€k,n)w1 (36)
I\l(k,ﬁ):-NS Zd:gog ([k ;] 7€k,n)
NS,
= 37
Qslk,n] + Qnsk,n] o 50
Py (false positive (22)
— Py (returnsimilarjimages are non-similar ~ (23) EladdLosgNS) |k, n| = P(D < tleg,n)wo (38)
= Py (returnsimilar|D > t) (24) _ P <t ek,n)wo (39)
14| P(eg,n)
= ZPM(return similar, D = d|D > t) (25) Yo P(D=d enn) 0
d=0 = |A]| — Wo (40)
N >dmo P(D =d, en)
1 L. Qs[k n]
== Py (returnsimilar, D = d 26 = ’
P(D > 1) 2, Tetmsimiar D =) - (26) Oslf ] + sl @D



FEladdLos$C)|k, n| = (42)
=1+ P(next feature similge; ,,)addLossOgt,n + 1)+
(43)
P(next feature non-similéy, ,)addLossOgt + 1,n + 1)
(44)
P(next feature similarey_,,)

P(ek,n)

addLossOgt, n + 1)+
(45)

P(next feature non-Sim"aEk’”)addLossOy:(lk L)
,M

P(ek,n) BP(D>t e .
(46) Proof: Let M’ be a decision matrix such that
P(eknit) the SEQUENTIAL algorithm parametrized with it
=1+ maddl-ossorﬁf,wr 1)+ (47) always returns the true answer by sampling all the
Ple ’“’") corresponding features. Then:
k+1,n+1
7P(ek,n) addLossOpt + 1,n + 1) (48) IA| = Loss(M’, w, wn) (56)
14 Qs[/{,n—Fl]+QN5[/€,TL+l]addLossoﬁvf’n_i_l)_i_ ZLOSiM*,wO,wl) (57)
Qslk,n] + Qns[k,n] (49) > Py« (false negativeP (D < t)wg (58)
: A
Qslk+1,n+ 1]+ Qnslk + 1,7 +1] y (50) = P+ (false negativeP (D < t)m (59)
Qs[k,n] + QNS[k, n] o
addLossOffts + 1,7+ 1) (51) ¢
Py~ (false negative< «
APPENDIX V Explanations:
BACKWARD INDUCTION SOLUTION THEOREMS (56) loss for taking all samples
. N . . . (57) M* is optimal
_ Theorem_l.Let M* be a dem_su_t)n matrix vv_hlch (58) part of sum of non-negatives
is the solution to Eq. 8. Then it is the solution to (59) wy = —Al
the original minimization problem Eq. 7 with = oPpsn Al
) o The proof of if wy, = —=5— then
Py« (false negativeand 5 = P« (false positive. P (fal itive < 3 is simil pP(D>1) -
Proof: Let M’ be another decision matrix of u- (false positive < 5 is similar.
the same size and smaller/equal error probabilities.
APPENDIX VI

Then:

loss(M™, wo,wn)

= Py~ (false negativeP (D < t)wo+ (52)
Py~ (false positiveP (D > t)w;+
E\s«[#samplek

< Py (false negativeP (D < t)wo+ (53)
Py (false positiveP(D > t)w;+
E\y [#samplep

< Py;-(false negativeP (D < t)wo+ (54)
Py« (false positiveP (D > t)wi+ (55)

E\y [#samplep

)

E\- [#samplep< E) [#samples
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Explanations:

(52) Definition of theloss function (Eg. 8)
(53) M* is optimal (Eq. 8)

(54) Py (false negative< Py« (false negative
(55) Py (false positive < Py« (false positive

Theorem 2:Let M* be the optimal decision
trix returned by Alg. 3 for someuy, wy. If wy =

% then Py,-(false negative < a. If w, =

A ; then Py (false positive < 3

COMPUTATION OF PROBABILITIES FOR THE
P-SPRTFRAMEWORK

The likelihood ratio derivation:
P(€k7n|D > t)

Mewn) = 5 oD <D (60)
- Zl;lA:'t-f_l P(ek,n, D= d|D > t) 61)
lAl P(ek.n,D=d,D>t)
_ Led=ttl P(D>t)
= "¢  Plenn.D=d,D<D) (62)
> d=0 POy

_ (P(D < t)> S P(ekn, D = d)
P(D>1) S Plern, D =d)
(63)

Explanations:
(61) disjoint and complementary events

ma-



(62) conditional probability definition

The initialization of the cache (in Alg. 5) is:

Plein,D=d)=Pleia|D=d)P(D=d) (64)
d

= mP(D =d) (65)

The update of the cache (in Alg. 5), where= 0
orl,is:

P(ek+bn+1, D =d) (66)
= P(D = d)P(erspn41|D = d) (67)

= P(D = d)P(exn|D = d)P(nextbley.,, D = d) (68)

= P(exn, D = d)P(nextbley.,, D = d) (69)

where:
P(next0|ey n, D = d) (70)
- (17 max (0, ((|4] ~d) — (n — k»)) a1
Al —n
P(nextllegn,D = d) (72)

= min (1, W) (73)
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