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Robust Real Time Pattern Matching using
Bayesian Sequential Hypothesis Testing

Ofir Pele and Michael Werman

Abstract— This paper describes a method for robust
real time pattern matching. We first introduce a family of
image distance measures, the “Image Hamming Distance
Family”. Members of this family are robust to occlusion,
small geometrical transforms, light changes and non-
rigid deformations. We then present a novel Bayesian
framework for sequential hypothesis testing on finite pop-
ulations. Based on this framework, we design an optimal
rejection/acceptance sampling algorithm. This algorithm
quickly determines whether two images are similar with
respect to a member of the Image Hamming Distance
Family. We also present a fast framework that designs
a near-optimal sampling algorithm. Extensive experimen-
tal results show that the sequential sampling algorithm
performance is excellent. Implemented on a Pentium 4
3GHz processor, detection of a pattern with 2197 pixels,
in 640x480 pixel frames, where in each frame the pattern
rotated and was highly occluded, proceeds at only 0.022
seconds per frame.

Index Terms— Pattern matching, template matching,
pattern detection, image similarity measures, Hamming
distance, real time, sequential hypothesis testing, compos-
ite hypothesis, image statistics, Bayesian statistics, finite
populations

I. INTRODUCTION

M ANY applications in image processing and
computer vision require finding a particular

pattern in an image,pattern matching. To be use-
ful in practice, pattern matching methods must be
automatic, generic, fast and robust.

Pattern matching is typically performed by scan-
ning the entire image, and evaluating a distance
measure between the pattern and a local rectangular
window. The method proposed in this paper is appli-
cable to any pattern shape, even a non-contiguous
one. We use the notion of “window” to cover all
possible shapes.

First, we introduce a family of image distance
measures called the “Image Hamming Distance
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Family”. A distance measure in this family is the
number of non-similar corresponding features be-
tween two images. Members of this family are
robust to occlusion, small geometrical transforms,
light changes and non-rigid deformations.

Second, we show how to quickly decide whether
a window is similar to the pattern with respect
to a member of the “Image Hamming Distance
Family”. The trivial, but time consuming solution is
to compute the exact distance between the pattern
and the window by going over all the corresponding
features (the simplest feature is a pixel). We present
an algorithm that samples corresponding features
and accumulates the number of non-similar features.
The speed of this algorithm is based on the fact
that the distance between two non-similar images
is usually very large whereas the distance between
two similar images is usually very small (see Fig.
2). Therefore, for non-similar windows the sum will
grow extremely fast and we will be able to quickly
decide that they are non-similar. As the event of
similarity in pattern matching is so rare (see Fig.
2), we can afford to pay the price of going over all
the corresponding features in similar windows. Note
that the algorithm does not attempt to estimate the
distances for non-similar windows. The algorithm
only decides that these windows, with a very high
probability (for example, 99.9%), are non-similar.
The reduction in running time is due to the fact that
this unnecessary information is not computed.

The idea of sequential sampling [1] or sequential
sampling a distance is not new [2]. The major con-
tribution in our work is a novel efficient Bayesian
framework for hypothesis testing on finite popula-
tions. Given allowable bounds on the probability
of error (false negatives and false positives) the
framework designs a sampling algorithm that has
the minimum expected running time. This is done
in an offline phase for each pattern size. An online
phase uses the sampling algorithm to quickly find
patterns. In order to reduce offline running time we
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(a)

(b) (c) (d)

Fig. 1. Real time detection of a rotating and highly occludedpattern.
(a) A non-rectangular pattern of 2197 pixels. Pixels not belonging to the mask are in black. (b) Three 640x480 pixel frames out of fourteen
in which the pattern was sought. (c) The result. Most similarmasked windows are marked in white. (d) Zoom in of the occurrences of the
pattern in the frames. Pixels not belonging to the mask are inblack.
The SEQUENTIAL algorithm proceeds at only 0.022 seconds per frame. Offline running time - time spent on the parameterization of the
SEQUENTIAL algorithm (with P-SPRT, see Section IV-D) was 0.067 seconds. Note that the distance is robust to out of plane rotations and
occlusion. Using other distances such as CC, NCC,l2, l1 yielded poor results. In particular they all failed to find the pattern in the last frame.
We emphasize that no motion consideration was taken into account in computation. The algorithm ran on all windows. Full size images are
available at:http://www.cs.huji.ac.il/∼ofirpele/hs/all images.zip
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Fig. 2. The distance of the pattern to most windows in pattern
matching is very high. A distance measure from the Image Hamming
Distance Family was computed between the pattern and a sliding
masked window in the video frames of Fig. 1. Above we see the
resulting histogram. The left part of the histogram is zoomed in. We
can see that most of the windows in the video were very far from
the pattern. This is a typical histogram.

also present a fast framework that designs a near-
optimal sampling algorithm. For comparison, we
also present a framework that designs an optimal
fixed size sampling algorithm. Theoretical and ex-
perimental results shows that sequential sampling
needs significantly fewer samples than fixed size
sampling.

Sampling is frequently used in computer vision,
to reduce time complexity that is caused by the
size of the image data. Our work (like work by
Matas et al. [3], [4]) shows that designing an optimal
or a near-optimalsequentialsampling scheme (by
contrast to the frequently usedfixed sizesampling
scheme) is important and can improve speed and
accuracy significantly.

A typical pattern matching task is shown in Fig. 1.
A non-rectangular pattern of 2197 pixels was sought
in a sequence of 14, 640x480 pixel frames. Using
the sampling algorithm the pattern was found in
9 out of 11 frames in which it was present, with
an average of only 19.70 pixels examined per win-

TABLE I

NOTATION TABLE

A, |A| Set that contains spatial coordinates
of features (for example, spatial co-
ordinates of pixels).|A| is the size of
the set.

D Random variable of the Hamming
distance.

t Image similarity threshold,i.e. if the
Hamming distance of two images is
smaller or equal tot, then the images
are considered similar. Otherwise, the
images are considered non-similar.

p Pixel similarity threshold. Used in
several members of the Image Ham-
ming Distance Family.

dow instead of 2197 needed for the exact distance
computation. On a Pentium 4 3GHz processor, it
proceeds at only 0.022 seconds per frame. Other
distances such as cross correlation (CC), normalized
cross correlation (NCC),l1, l2, yielded poor results
even though they were computed exactly (the com-
putation took much longer).

This paper is organized as follows. Section II
is an overview of previous work on fast pattern
matching, Hamming distance in computer vision
and sequential hypothesis testing. Section III intro-
duces the Image Hamming Distance Family. Section
IV describes the Bayesian framework. Section V
discusses the issue of the prior. Section VI presents
extensive experimental results. Finally, conclusions
are drawn in Section VII. A notation table for the
rest of the paper is given in Table I.

II. PREVIOUS WORK

A. Fast Pattern Matching

The distances most widely used for fast pattern
matching are cross correlation and normalized cross
correlation. Both can be computed relatively quickly
in the Fourier domain [5], [6].

The main drawback of correlation, which is based
on the Euclidean distance, is that it is specific
to Gaussian noise. The difference between images
of the same object often results from occlusion,
geometrical transforms, light changes and non-rigid
deformations. None of these can be modeled well
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with a Gaussian distribution. For a further discus-
sion on Euclidean distance as a similarity measure
see [7]–[10]. Note that although the Hamming dis-
tance is not specific to Gaussian noise as thel2
norm, it is robust to Gaussian noise (see Fig. 3).
Normalized cross correlation is invariant to additive
and multiplicative gray level changes. However, nat-
ural light changes include different effects, such as
shading, spectral reflectance, etc. In addition, when
a correlation is computed in the transform domain,
it can only be used with rectangular patterns and
usually the images are padded so that their height
and width are dyadic.

Lucas and Kanade [11] employed the spatial in-
tensity gradients of images to find a good match us-
ing a Newton-Raphson type of iteration. The method
is based on Euclidean distance and it assumes that
the two images are already in approximate registra-
tion.

Local descriptors have been used recently for
object recognition [12]–[17]. The matching is done
by first extracting the descriptors and then matching
them. Although fast, our approach is faster. In
addition, there are cases where the local descriptors
approach is not successful (see Fig. 7). If one knows
that the object view does not change drastically,
the invariance of the local descriptors can affect
performance and robustness [17]. In this work we
decided to concentrate on pixel values or simple
relation of pixels as features. Combining the se-
quential sampling algorithm approach with the local
descriptors approach is an interesting extension of
this work.

Recently there have been advances in the field
of fast object detection using a cascade of rejectors
[18]–[21]. Viola and Jones [20] demonstrated the
advantages of such an approach. They achieved real
time frontal face detection using a boosted cascade
of simple features. Avidan and Butman [21] showed
that instead of looking at all the pixels in the image,
one can choose several representative pixels for
fast rejection of non-face images. In this work we
do not deal with classification problems but rather
with a pattern matching approach. Our approach
does not include a learning phase. The learning
phase makes classification techniques impractical
when many different patterns are sought or when
the sought pattern is given online,e.g.in the case of
patch-based texture synthesis [22], pattern matching
in motion estimation, etc.

Hel-Or and Hel-Or [23] used a rejection scheme
for fast pattern matching with projection kernels.
Their method is applicable to any norm distance,
and was demonstrated on the Euclidean distance.
They compute the Walsh-Hadamard basis projec-
tions in a certain order. For the method to work fast
the first Walsh-Hadamard basis projections (accord-
ing to the specific order) need to contain enough
information to discriminate most images. Ben-Artzi
et al. [24] proposed a faster projection scheme
called “Gray-Code Kernels”. Ben-Yehuda et al. [25]
extended the Hel-Or pattern matching method to
handle non-rectangular patterns by decomposition
of the pattern into several dyadic components.

Cha [26] uses functions that are lower bounds
to the sum of absolute differences, and are fast
to compute. They are designed to eliminate non-
similar images fast. The first function he suggests is
the h-distance:

∑r−1
k=0 |

∑k
l=0(Gl(Im1) − Gl(Im2))|,

where Gl(Im) is the number of pixels with gray
level l in the intensity histogram of the image,Im,
andr is the number of gray levels, usually 256. The
time complexity is O(r). The second function he
suggests is the absolute value of difference between
sums of pixels:|

∑
Im1(x, y) −

∑
Im2(x, y)|. The

method is restricted to thel1 norm and assumes that
these functions can reject most of the images fast.

One of the first rejection schemes was proposed
by Barnea and Silverman [2]. They suggested the
Sequential Similarity Detection Algorithms - SSDA.
The method accumulates the sum of absolute dif-
ferences of the intensity values in both images and
applies a threshold criterion - if the accumulated
sum exceeds a threshold, which can increase with
the number of pixels, they stop and returnnon-
similar. The order of the pixels is chosen randomly.
After n iterations, the algorithm stops and returns
similar. They suggested three heuristics for finding
the thresholds for thel1 norm. This method is very
efficient but has one main drawback. None of the
heuristics for choosing the thresholds guarantees a
bound on the error rate. As a result the SSDA was
said to be inaccurate [27]. Our work is a variation of
the SSDA. We use a member of the Image Hamming
Distance Family instead of thel1 norm. We also
design a sampling scheme with proven error bounds
and optimal running time. As the SSDA uses thel1
norm, in each figure where thel1 norm yields poor
results (see Figs. 1, 4, 5 and 6) the SSDA also yields
poor results.
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(a)

(b) (c)

(a-zoom)

(d)

Fig. 3. Real time detection of a specific face in a noisy image of a crowd.
(a) A rectangular pattern of 1089 pixels. (b) A noisy versionof the original 640x480 pixel image. The pattern that was taken from the original
image was sought in this image. The noise is Gaussian with a mean of zero and a standard deviation of 25.5. (c) The result image. The single
similar masked window is marked in white. (d) The occurrenceof the pattern in the zoomed in image. TheSEQUENTIAL algorithm proceeds
at only 0.019 seconds per frame. Offline running time - time spent on the parameterization of theSEQUENTIAL algorithm (with P-SPRT,
see Section IV-D) was 0.018 seconds. Note that although the Hamming distance is not specific to Gaussian noise as thel2 norm, it is robust
to Gaussian noise. The image is copyright by Ben Schumin and was downloaded from:http://en.wikipedia.org/wiki/Image:
July 4 crowd at Vienna Metro station.jpg. Full size images are available at:http://www.cs.huji.ac.il/∼ofirpele/
hs/all images.zip

Mascarenhas et al. [28], [29] used Wald’s Se-
quential Probability Ratio Test (SPRT) [1] as the
sampling scheme. Two models were suggested for
the random variable of the distance of the sample
k. The first converts the images to binary and then
P (k) is binomially distributed. The second assumes
that the images are Gaussian distributed; henceP (k)
is also Gaussian distributed. The likelihood ratio is
defined as:λ(k) = P (k|images are non-similar)

P (k|images are similar) . The SPRT
samples both images as long as:A < λ(k) < B.
Whenλ(k) ≤ A the SPRT stops and returnssimilar.
When λ(k) ≥ B the SPRT stops and returnsnon-
similar. Let the bounds on the allowable error rates
be P (false positive) = β, P (false negative) = α.
Wald’s [1] approximation forA andB is A = β

1−α

, B = 1−β

α
.

There are several problems with their method.
Converting images to binary results in a loss of
information. In addition, gray levels are far from
being Gaussian distributed [30]–[33]. Our method
does not assume any prior on the images. Mas-
carenhas et al. assume that all similar images have
exactly the same pairwise small distance, whereas
any two non-similar images have exactly the same
large distance, an assumption that is faulty. Our
framework gets a prior on the distribution of image
distances as input. The classical SPRT can go on
infinitely. There are ways to truncate it [34], but
they are not optimal. By contrast, we designed an

optimal rejection/acceptance sampling scheme with
a restricted number of samples.

B. Hamming Distance in computer vision

Hamming Distance in computer vision [35]–[41]
has usually been applied to a binary image, ordinar-
ily a binary transform of a gray level image. Ionescu
and Ralescu’s crisp version of the “fuzzy Hamming
distance” [39] is an exception, where a threshold
function is applied to decide whether two colors are
similar.

A comprehensive review of local binary features
of images and their usage for 2D Object detection
and recognition can be found in Amit’s book [35].
Amit suggests using the Hough transform [42] to
find arrangements of the local binary features. In
Appendix II we show how the Hough transform
can be used to compute the Hamming distance of
a pattern with all windows of an image. We also
show that the expected time complexity for each
window isO(|A|−E[D]), where|A| is the number
of pixels in the pattern’s set of pixels andD is the
random variable of the Hamming distance between
a random window and a random pattern. For the
pattern matching in Fig. 1,E[D] = 1736.64, |A| =
2197. Thus, the average work for each window
using the Hough transform is460.36, much higher
than the19.70 needed using our approach, but much
less than comparing all the corresponding pixels.
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Bookstein et al. [40] proposed the “Generalized
Hamming Distance” for object recognition on bi-
nary images. The distance extends the Hamming
concept to give partial credit for near misses.
They suggest a dynamic programming algorithm
to compute it. The time complexity isO(|A| +∑

Im1
∑

Im2), where|A| is the number of pixels
and

∑
Im is the number of ones in the binary

image,Im. Our method is sub-linear. Another dis-
advantage is that their method only copes with near
misses in the horizontal direction. We suggest using
the Local Deformationsmethod (see Section III) to
handle near misses in all directions.

C. Sequential Hypothesis Testing

Sequential tests are hypothesis tests in which the
number of samples is not fixed but rather is a
random variable. This area has been an active field
of research in statistics since its initial development
by Wald [1]. A mathematical review can be found
in Siegmund [34].

There have been many applications of sampling
in computer vision to reduce time complexity that
is caused by the size of the image data. However,
most have been applied with a sample of fixed size.
Exceptions are [2]–[4], [28], [29], [43]–[45]. The
sampling schemes that were used are Wald’s SPRT
[1] for simple hypotheses, or a truncated version of
the SPRT (which is not optimal) or estimation of
the thresholds. The Matas and Chum method [3]
for reducing the running time of RANSAC [46] is
an excellent example of the importance of optimal
design of sampling algorithms.

There are several differences between the above
methods and the one presented here. The first is that
in the pattern matching problem, the hypotheses are
composite and not simple. LetD be the random
variable of the Hamming distance between a random
window and a random pattern. Instead of testing
the simple hypothesisD = d1 against the simple
hypothesisD = d2, we need to test the composite
hypothesisD ≤ t against the composite hypothesis
D > t. This problem is solved by using a prior
on the distribution of the Hamming distance and
developing a framework that designs an optimal
sampling algorithm with respect to the prior. The
second difference is that the efficiency of the design
of the optimal sampling algorithm is also taken into
consideration. In addition, we present a fast algo-
rithm that designs a near-optimal sampling scheme.

Finally, as a by-product, our approach returns the
expected running time and the expected error rate.

III. I MAGE HAMMING DISTANCE FAMILY

A distance measure from the Image Hamming
Distance Family is the number of non-similar cor-
responding features between two images, where the
definition of a feature and similarity vary between
members of the family. Below is a formal definition
and several examples.

A. Formal Definition

sim(Im1, Im2, (x, y)m) → {0, 1} is the similar-
ity function, 1 is for non-similar, 0 is for similar,
where Im1, Im2 are images and(x, y)m are the
spatial coordinates of a feature. In all our examples
m is 1 or 2. If m = 1 we are testing for similarity
between pixels. Ifm = 2 we are testing for
similarity between pairs of pixels (see “Monotonic
Relations” in Section. III-B for an example). We
usually omitm for simplicity.

HammingDistanceA(Im1, Im2) =∑
(x,y)m∈A sim(Im1, Im2, (x, y)m) is the Hamming

distance between the set of spatial coordinatesA

applied to the imagesIm1, Im2. Note that the
spatial coordinates inA do not need to form a
rectangular window in the image. In fact they do
not need to form a connected region.

B. Examples

In all following examples theδ function returns
1 for true and 0 for false.

“Thresholded Absolute Difference”
sim(Im1, Im2, (x, y)) =

δ(|(Im1(x, y)) − (Im2(x, y))| > p)

The distance is similar to Gharavi and Mills’s
PDC distance [47].

“Thresholdedl2 norm in L*a*b color space”
sim(Im1, Im2, (x, y)) =

δ(||L*a*b* (Im1(x, y)) − L*a*b* (Im2(x, y))||2 > p)

The L*a*b* color space was shown to be ap-
proximately perceptually uniform [48]. This means
that colors which appear similar to an observer are
located close to each other in the L*a*b* coordinate
system.i.e. by thresholding the Euclidean distance
between the two〈L∗, a∗, b∗〉 vectors, the function
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tests whether two color pixels are perceptually sim-
ilar. Note that if the color is more important, we can
multiply the L∗ channel with a coefficient smaller
than one.

“Monotonic Relations”

The features used in this distance are pairs of
pixels. The pair[Im1(x1, y1), Im1(x2, y2)] is con-
sidered similar to[Im2(x1, y1), Im2(x2, y2)] if the
same relation holds between them. For example,
assuming WLOG thatIm1(x1, y1) > Im1(x2, y2)
for all pairs of coordinates[(x1, y1), (x2, y2)] in A,
the similarity function can be:

sim(Im1, Im2, [(x1, y1), (x2, y2)]) =
δ(Im2(x1, y1) ≤ Im2(x2, y2))

This distance is invariant to noises that pre-
serve monotonic relations. Thus it is robust to
light changes (see Figs. 4 and 5). The distance is
equivalent to the Hamming distance on the Zabih
and Woodfill censustransform [36]. We suggest
that for a specific pattern, a reasonable choice for
A = {[(x1, y1), (x2, y2)]} are pairs of indices that
correspond to edges;i.e. points that are spatially
proximal with large intensity difference. Such pairs
are discriminative because of image smoothness.

“Local Deformations”

Local Deformationsis an extension to distance
measures of the Image Hamming Distance Fam-
ily which makes them invariant to local deforma-
tions, e.g. non-rigid deformations (see Fig. 6). Let
sim(Im1, Im2, (x, y)m) be the similarity function
of the original Hamming distance measure. Letε =
(εx, εy) be a shift. Let(Im)ε(x, y) = Im(x+εx, y+
εy). We denote byΓ the set of allowable shifts. The
Local Deformationsvariant similarity function of
this Hamming distance measure is:

ŝim(Im1, Im2, (x, y)m) =
minε∈Γ sim(Im1, (Im2)ε, (x, y)m)

Brunelli and Poggio [49] used a similar technique
to make CC more robust.

C. Advantages

Members of the Image Hamming Distance Fam-
ily can be invariant to light changes, small deforma-
tions, etc. Invariance is achieved by “plugging in”
the appropriate similarity function.

Members of the Image Hamming Distance Fam-
ily have an inherent robustness to outlier noise, for
example, out of plane rotation, shading, spectral
reflectance, occlusion, etc. Using the Hamming dis-
tance, outliers up to the image similarity threshold
t are disregarded. Norms such as the Euclidean
add irrelevant information; namely, the difference
between the intensity values of such pixels and the
image.

The Euclidean norm is most suited to deal with
Gaussian noise. The difference between images of
the same object often results from occlusion, ge-
ometrical transforms, light changes and non-rigid
deformations. None of these can be modeled well
with a Gaussian distribution.

Although it might seem that members of the
Image Hamming Distance Family are not robust
because the similarity function of a featuresim is
a threshold function, it is in fact robust because it
is a sum of such functions.

Finally, the simplicity of the Image Hamming
Distance Family allows us to develop a tractable
Bayesian framework that is used to design an opti-
mal rejection/acceptance sampling algorithm. After
we design the sampling algorithm offline, it can
quickly determine whether two images are similar.

IV. SEQUENTIAL FRAMEWORK

We first present theSEQUENTIAL algorithm that
assesses similarity by a sequential test. Then we
evaluate its performance and show how to find the
optimal parameters for theSEQUENTIAL algorithm.
Finally we illustrate how to quickly find near-
optimal parameters for theSEQUENTIAL algorithm.

A. TheSEQUENTIAL algorithm

The SEQUENTIAL algorithm, Alg. 1, uses a de-
cision matrix M . M [k, n] is the decision after
samplingk non-similar corresponding features out
of a total ofn sampled corresponding features. The
decision can beNS=return non-similar, S=return
similar or C=continue sampling. The last column
|A| cannot beC as the test has to end there, see the
diagram in Fig. 8. We random sample uniformly as
we do not want to make any assumptions about the
noise. Note that as we sample without replacement,
the algorithm always returnssimilar or non-similar
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(a)

(b) (c) (d)

Fig. 4. Monotonic RelationsHamming distance is robust to light changes and small out of plane and in plane rotations.
(a) A non-rectangular pattern of 7569 pixels (631 edge pixelpairs). Pixels not belonging to the mask are in black. (b) A 640x480 pixel image
in which the pattern was sought. (c) The result image. All similar masked windows are marked in white. (d) The two found occurrences of
the pattern in the image. Pixels not belonging to the mask arein black. TheSEQUENTIAL algorithm proceeds at only 0.021 seconds. Offline
running time - time spent on the parameterization of theSEQUENTIAL algorithm (with P-SPRT, see Section IV-D) and finding the edge
pixels was 0.009 seconds. Note the substantial differencesin shading between the pattern and its two occurrences in theimage. Also note
the out of plane (mostly the head) and in plane rotations of the maras (the animals in the picture). Using other distances such as CC, NCC,
l2, l1 yielded poor results. In particular the closest window using CC, l2, l1 was far from the maras. Using NCC the closest window was
near the right mara but it found many false positives before finding the left mara. The pairs that were used are pairs of pixels belonging to
edges,i.e. pixels that have a neighbor pixel, where the absolute intensity value difference is greater than 80. Two pixels,(x2, y2), (x1, y1)
are considered neighbors if theirl∞ distance:max(|x1 − x2|, |y1 − y2|) is smaller or equal to 2. There are 631 such pairs in the pattern.
Similar windows are windows where at least 25% of their pairsexhibit the same relation as in the pattern. Full size imagesare available at:
http://www.cs.huji.ac.il/∼ofirpele/hs/all images.zip

(a)

(b) (c) (d)

(a-zoom)

Fig. 5. Monotonic RelationsHamming distance is robust to light changes and occlusion.
(a) A non-rectangular pattern of 2270 pixels (9409 edge pixel pairs). Pixels not belonging to the mask are in black. (b) A 640x480 pixel
image in which the pattern was sought. (c) The result image. The single similar masked window is marked in white. (d) The occurrences
of the pattern in the image zoomed in. Pixels not belonging tothe mask are in black. TheSEQUENTIAL algorithm proceeds at only 0.037
seconds. Offline running time - time spent on the parameterization of theSEQUENTIAL algorithm (with P-SPRT, see Section IV-D) and
finding the edge pixels was 1.219 seconds. Note the considerable differences in the light between the pattern and the occurrences of the
pattern in the image, especially the specular reflection in the pattern. Also note the difference in the spotting of the frogs and the difference
in the pose of the legs (the top right leg is not visible in the image). Using other distances such as CC, NCC,l2, l1 yielded poor results.
In particular the closest window using CC, NCC,l2, l1 was far from the frog. The pairs that were used are pairs of pixels belonging to
edges,i.e. pixels that have a neighbor pixel, where the absolute intensity value difference is greater than 80. Two pixels,(x2, y2), (x1, y1)
are considered neighbors if theirl∞ distance:max(|x1 − x2|, |y1 − y2|) is smaller or equal to 5. There are 9409 such pairs in the pattern.
Similar windows are windows where at least 25% of their pairsexhibit the same relation as in the pattern. Full size imagesare available at:
http://www.cs.huji.ac.il/∼ofirpele/hs/all images.zip



9

(a)

(b) (c)

(a-zoom)

(d)

Fig. 6. Local Deformationsis robust to non-rigid deformations.
(a) A non-rectangular pattern (snake skin) of 714 pixels. Pixels not belonging to the mask are in black. (b) A 640x480 pixel image in which
the pattern was sought. (c) The result image. All similar masked (adjacent) windows are marked in white. (d) Most similaroccurrence of
the pattern in the zoomed-in image. Pixels not belonging to the mask are in black. TheSEQUENTIAL algorithm proceeds at only 0.064
seconds. Offline running time - time spent on the parameterization of theSEQUENTIAL algorithm (with P-SPRT, see Section IV-D) was
0.007 seconds. Using other distances such as CC, NCC,l2, l1 yielded poor results. In particular the closest window using CC, NCC,l2, l1
was far from the snake skin. SIFT descriptor matching [13], also yielded poor results (see Fig. 7). The distance that was used is theLocal
Deformationsvariant of theThresholded Absolute Differencedistance with a threshold of 20. The group of shifts isΓ = {±1,±1}, i.e.
8-neighbors. Similar windows are windows where at least 5% of their pixels (or neighbors) have anl1 distance smaller or equal to 20. Full
size images are available at:http://www.cs.huji.ac.il/∼ofirpele/hs/all images.zip

(SIFT-1) (SIFT-5)

Fig. 7. SIFT descriptor matching [13] on the pattern matching in Fig. 6. The pattern in the left part of each figure is zoomed. (SIFT-1)
The correspondences between the eleven SIFT descriptors inthe pattern and the most similar SIFT descriptors in the image. Note that all
correspondences are false. (SIFT-5) The correspondences between the eleven SIFT descriptors in the pattern and the fivemost similar SIFT
descriptors in the image (each one to five correspondence groups has a different symbol). Note that only one correspondence is true. It is
the fifth most similar correspondence of the descriptor and is marked with a circle.

after at most|A| samples. Bear in mind that it is
possible to add more kinds of decisions1.

The framework computes the optimal decision
matrix offline. Then, the algorithm can quickly de-
cide whether a pattern and a window are similar,i.e.
if their Hamming distance is smaller or equal to the

1e.g.the computation of the exact distance that reduces the running
time overhead of the checks on the decision matrix entries (the ifs
in the algorithm). However, in practice this did not improveresults.

image similarity threshold,t. Note that the optimal
decision matrix does not have to be computed for
each new pattern. It should be computed once for
a given prior on the distribution of the distances,
desired error bounds and the size of patterns. For
example, if the task is finding30×30 patterns, then
it is enough to compute the decision matrix once.
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Fig. 8. Graphical representation of the decision matrixM which is used in theSEQUENTIAL algorithm (Alg. 1). In each step the algorithm
samples corresponding features and goes right if they are similar or right and up if they are non-similar. If the algorithm touches a red
NS point, it returnsnon-similar, with the risk of a false negative error. If the algorithm touches a greenS point, it returnssimilar, with
the risk of a false positive error. In this example, the size of the pattern,|A| is 21 and the threshold for image similarity,t is 9. Note
that theSEQUENTIAL algorithm parameterized with this decision matrix requires at least three non-similar corresponding features to return
non-similar and at least ten similar corresponding features to returnsimilar.

Algorithm 1 SEQUENTIALM (pattern, window, A)
k ⇐ 0
for n = 0 to |A| do

if M [k, n] = NS then
return non-similar

if M [k, n] = S then
return similar

random sample uniformly and without replace-
ment (x, y)m from A

\\ add 1 if features are non-similar
k ⇐ k + sim(pattern, window, (x, y)m)

B. Evaluating performance of a fixed decision ma-
trix

In order to find the optimal decision matrix for
the SEQUENTIAL algorithm, we first evaluate the
performance of the algorithm for a fixed decision
matrix. The performance of the algorithm is defined
by its expected number of samples and its error
probabilities:

EM(#samples) = Expected number of

samples (proportional to running time).
PM(false negative) = Probability of re-
turning non-similaron similar windows.
PM(false positive) = Probability of return-
ing similar on non-similar windows.

We denote byek,n the event of samplingk non-
similar corresponding features out of a total of
n sampled corresponding features, in any specific
order (for example, where the non-similar corre-
sponding features are sampled first). Note that all
orders of sampling have the same probability. As
we sample without replacement we get:

P (ek,n|D = d) =



(∏k−1
i=0

d−i
|A|−i

)(∏n−k−1
i=0

|A|−d−i

|A|−k−i

)
if (d ≥ k)&

(|A| − d ≥ n − k)

0 otherwise
(1)

The naive computation ofP (ek,n|D = d) for each
k, n and d runs in O(|A|4). In order to reduce
time complexity to O(|A|3), we use a dynamic
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programming algorithm to compute the intermediate
sums,ΩS[k, n] and ΩNS[k, n] (see Eq. 2) for each
k and n where P (D = d) is the prior on the
distribution of the Hamming distance (see Section
V).

ΩS[k, n] =
t∑

d=0

P (ek,n|D = d)P (D = d)

ΩNS [k, n] =
|A|∑

d=t+1

P (ek,n|D = d)P (D = d)

(2)

In each step theSEQUENTIAL algorithm sam-
ples spatial coordinates of a feature(x, y)m and
adds sim(pattern, window, (x, y)m) to the sample
dissimilarity sumk. Define a specific run of the
algorithm as a sequence of random variables:
s1, s2, . . . where sn ∈ {0, 1} is the result of
sim(pattern, window, (x, y)m) in iteration number
n. Let ΨM [k, n] be the number of different se-
quences ofs1, s2, . . . , sn with k ones andn − k

zeros which will not cause theSEQUENTIAL al-
gorithm that uses the decision matrixM to stop
at an iteration smaller thann. Graphically (see
Fig. 8) ΨM [k, n] is the number of paths from the
point (0, 0) to the point(k, n) that do not touch a
stopping point (S,NS). Alg. 2 computesΨM with
time complexity of O(|A|2).

Algorithm 2 computeΨM

Ψ[0...|A|, 0...|A|] ⇐ 0
k ⇐ 0 n ⇐ 0
while M [k, n] = C do

Ψ[k, n] ⇐ 1
n ⇐ n + 1

Ψ[k, n] ⇐ 1
for n = 1 to |A| do

for k = n to 1 do
if M [k, n − 1] = C then

Ψ[k, n] ⇐ Ψ[k, n] + Ψ[k, n − 1]
if M [k − 1, n − 1] = C then

Ψ[k, n] ⇐ Ψ[k, n] + Ψ[k − 1, n − 1]
return Ψ

Now we can compute (see full derivation in
Appendix III) the error probabilities and expected
number of samples explicitly using a prior on the
distribution of the Hamming distance ,P (D = d)
(see Section V):

PM(false negative) =

∑
(k,n):

M(k,n)=NS

Ψ[k, n]ΩS[k, n]

P (D ≤ t)

(3)

PM(false positive) =

∑
(k,n):

M(k,n)=S

Ψ[k, n]ΩNS[k, n]

P (D > t)
(4)

EM (#samples) = (5)
∑

(k,n):
M(k,n)∈{S,NS}

Ψ[k, n](ΩS [k, n] + ΩNS[k, n])n

(6)

C. Finding the optimal decision matrix

Our goal is to find the decision matrix,M that
minimizes expected number of samples given allow-
able bounds on the error probabilities,α, β:

arg min
M

EM(#samples)

s.t :

PM(false negative) ≤ α

PM(false positive) ≤ β

(7)

Instead of solving Eq. 7 directly we assign two
new weights:w0 for a false negative error event and
w1 for a false positive error event,i.e. we now look
for the decision matrix,M that solves Eq. 8:

arg min
M

loss(M, w0, w1) s.t :

loss(M, w0, w1) = EM (#samples) +

PM (false positive)P (D > t)w1+

PM (false negative)P (D ≤ t)w0

(8)

Following the solution of Eq. 8 we show how
to use it to solve Eq. 7. We solve Eq. 8 using the
backward induction technique [50]. The backward
induction algorithm, Alg. 3 is based on the principle
that the best decision in each step is the one with
the smallest expected addition to the loss function.
In Appendix IV we show how to explicitly compute
the expected additive loss of each decision in each
step.

If we find error weights,w0, w1 such that the
decision matrix, M that solves Eq. 8 has er-
ror probabilities, PM(false negative) = α and
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Algorithm 3 backward(w0, w1)
for k = 0 to |A| do

M [k, |A|] ⇐ arg mindecision∈{NS,S}
E[addLoss(decision)|k, |A|]

for n = |A| − 1 to 0 do
for k = 0 to n do

M [k, n] ⇐ arg mindecision∈{NS,S,C}
E[addLoss(decision)|k, n]

return M

PM(false positive) = β, then we have also found
the solution to the original minimization problem
Eq. 7. See Appendix V, Theorem 1 for the proof.

In order to find the error weights,w0, w1 which
yield a solution with errors as close as possible to
the requested errors (α for false negative andβ
for false positive) we perform a search (Alg. 4).
The search can be done on the 2D rectanglew0 ∈
[0, |A|

αP (D≤t)
] , w1 ∈ [0, |A|

βP (D>t)
] as it is guaranteed

that there is a solution in this rectangle with small
enough errors (see Appendix V, Theorem 2). Note
that increasing the error weightsw0 andw1 can only
increase the expected number of samples; thus there
is no need to search beyond this rectangle.

Alg. 4 returns a decision matrix with minimum
expected number of samples compared to all other
decision matrices with fewer or equal error rates
(see Appendix V, Theorem 1). However, as the
search is on two parameters, the search for the
requested errors can fail. In practice, the search
always returns errors which are very close to the
requested errors. In addition, if we restrict one of
the errors to be zero, the search is on one parameter,
hence a binary search returns a solution with errors
as close as possible to the requested errors. If Alg.
4 fails to return a decision matrix with errors close
to the requested errors, an exhaustive search of the
error weights,w0, w1 with high resolution can be
performed.

D. Finding a near-optimal decision matrix using P-
SPRT

Above, we showed how to find the optimal de-
cision matrix. The search is done offline for each
combination of desired error bound, size of pattern
and prior and not for each sought pattern. However,
this process is time consuming. In this section we
describe an algorithm that quickly finds a near-
optimal decision matrix.

Algorithm 4 searchOpt(α, β)

minw0 ⇐ 0 maxw0 ⇐
|A|

αP (D≤t)

minw1 ⇐ 0 maxw1 ⇐
|A|

βP (D>t)
repeat

midw0 ⇐
minw0 +maxw0

2

midw1 ⇐
minw1 +maxw1

2
M ⇐ backward(midw0, midw1)

computeΨM

PM(false negative) ⇐
1

P (D≤t)

∑
(k,n):

M(k,n)=NS

ΨM [k, n]ΩS[k, n]

PM(false positive) ⇐
1

P (D>t)

∑
(k,n):

M(k,n)=S

ΨM [k, n]ΩNS[k, n]

if PM(false negative) > α then
minw0 ⇐ midw0

else
maxw0 ⇐ midw0

if PM(false positive) > β then
minw1 ⇐ midw1

else
maxw1 ⇐ midw1

until |PM (false negative)−α|+ |PM (false positive)−β| < ε

return M

Our goal is again to find the decision matrix that
minimizes the expected running time, given bounds
on the error probabilities (see Eq. 7). We present
a near-optimal solution based on Wald’s Sequential
Probability Ratio Test (SPRT) [1]. We call this test
the “Prior based Sequential Probability Ratio Test”,
P-SPRT.

The classical SPRT [1] is a test between two
simple hypotheses,i.e. hypotheses that specify the
population distribution completely. For example, let
D be the random variable of the Hamming distance
between a random window and a random pattern.
A test of simple hypotheses isD = d1 against
D = d2. However, we need to test the composite
hypothesisD ≤ t against the composite hypothesis
D > t. This problem is solved by using a prior on
the distribution of the Hamming distance,D.

We now define the likelihood ratio. We denote by
ek,n the event of samplingk non-similar correspond-
ing features out of a total ofn sampled correspond-
ing features, in any specific order (for example,
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where the non-similar corresponding features are
sampled first). Note that all orders of sampling have
the same probability. The likelihood ratio,λ(ek,n)
is (see full derivation in Appendix VI):

λ(ek,n) =

(
P (D ≤ t)

P (D > t)

)

∑|A|

d=t+1 P (ek,n, D = d)
∑t

d=0 P (ek,n, D = d)




(9)
The P-SPRT samples both images as long as:

A < λ(ek,n) < B. Whenλ(ek,n) ≤ A the P-SPRT
stops and returnssimilar. Whenλ(ek,n) ≥ B the P-
SPRT stops and returnsnon-similar. Let the bounds
on the allowable error rates beP (false positive) =
β, P (false negative) = α. Wald’s [1] approximation
for A andB is A = β

1−α
andB = 1−β

α
.

The near-optimal character of the SPRT was
first proved by Wald and Wolfowitz [51]. For an
accessible proof see Lehmann [52]. The proof is
for simple hypotheses. However, replacing the like-
lihood ratio in the Lehmann proof with the prior
based likelihood ratio (see Eq. 9) shows that the
P-SPRT is a near-optimal solution to Eq. 7.

The SPRT and P-SPRT are near-optimal and
not optimal, because of the “overshoot” effect,i.e.
because the sampling is of discrete quantities, and
finding a P-SPRT with the desired error rates may
not be possible. In our experiments Wald’s approxi-
mations gave slightly lower error rates and a slightly
larger expected sample size. An improvement can be
made by searchingA andB for an error closer to the
desired error bound. This can be done withO(|A|2)
time complexity andO(|A|) memory complexity for
each step of the search. However, we have no bound
on the number of steps that needs to be made in the
search. In practice, Wald approximations give good
results.

The search for the optimal decision matrix is
equivalent to a search for two monotonic increasing
lines. First is the line of acceptance (see Fig. 8
green S line); i.e. if the SEQUENTIAL algorithm
touches this line it returnssimilar. Second is the
line of rejection (see Fig. 8 redNS line); i.e. if the
SEQUENTIAL algorithm touches this line it returns
non-similar. Note that unlike the optimal solution,
the P-SPRT solution cannot contain more than two
kinds of complementary decisions (in our case -
returningsimilar or returningnon-similar).

We now describe an algorithm (Alg. 5) that
computes the line of rejection inO(|A|2) time

complexity andO(|A|) memory complexity. The
computation of the line of acceptance is similar.
For each number of samples,n, we test whether
the height of the point of rejection can stay the
same as it was for the last stage, or whether it
should increase by one. For this purpose we need
to compare the likelihood ratio with the threshold
B. In order to compute the likelihood ratio fast,
we keep a cache of the probability of being in
the next rejection point and that the true distance
is equal to d. The cache is stored in the array
P (ek,n, D = d) for each distanced. Thus its size
is |A|+ 1. In Appendix VI we describe the explicit
derivation of the cache initialization and update
rules. For numerical stability, the cache in Alg. 5
can be normalized. In our implementation we store
P (D = d|ek,n) instead ofP (D = d, ek,n).

Algorithm 5 computeRejectionLine(|A|, α, β, P [D])

B ⇐ 1−β

α

\\ Never reject after 0 samples
rejectionLine[0] ⇐ 1
\\ Try (1,1) as first rejection point
k ⇐ 1
for d = 0 to |A| do

P (ek,n, D = d) ⇐ d
|A|

P (D = d)

for n = 1 to |A| do
likelihoodRatio⇐(

P (D≤t)
P (D>t)

) (∑|A|

d=t+1
P (ek,n,D=d)∑t

d=0
P (ek,n,D=d)

)

if likelihoodRatio> B then
for d = 0 to |A| do

P (ek,n, D = d) ⇐
P (ek,n, D = d)P (next 0|ek,n, D = d)

else
for d = 0 to |A| do

P (ek,n, D = d) ⇐
P (ek,n, D = d)P (next 1|ek,n, D = d)

k ⇐ k + 1
rejectionLine[n] ⇐ k

return rejectionLine

E. Implementation note

The fastest version of our algorithm is a version
of the SEQUENTIAL algorithm that does not check
its position in a decision matrix. Instead, it only
checks whether the number of non-similar features
sampled so far is equal to the minimum row number
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in the appropriate column in the decision matrix
that is equal toNS. In other words, we simply
check whether we have only touch the upper re-
jection line (see Fig. 8 red line ofNS). If we
finish sampling all the corresponding features and
we have not touched the upper line, the window is
unquestionably similar. In fact, the exact Hamming
distance is automatically obtained in such cases.
There is a negligible increase in the average number
of samples, as we do not stop on similar windows
as soon as they are definitely similar. However, the
event of similarity is so rare that the reduction in
the running time of processing each sample, reduces
the total running time.

V. PRIOR

The proposed frameworks are Bayesian,i.e. they
use a prior on the distribution of the distances
between two natural images,P (D = d). The prior
can be estimated, offline, by computing the exact
distance between various patterns and windows.
Another option is to use a non-informative prior,
i.e. a uniform prior in which the probability for each
possible distance is equal. Fig. 9 and Fig. 10 show
that the true distribution of distances is not uniform.
Nevertheless, Fig. 17 shows that even though we
use an incorrect (uniform) prior to parameterize
the algorithm, we obtain good results. It should
be stressed that other fast methods assume certain
characteristics of images. For example, Hel-Or and
Hel-Or [23] assume that the first Walsh-Hadamard
basis projections (according to their specific order)
contain enough information to discriminate most
images. Mascarenhas et al. [28], [29] assume that
images are binary or Gaussian distributed. In ad-
dition, they assume that all similar images have
exactly the same pairwise small distance, while all
two non-similar images have exactly the same large
distance. By explicitly using a prior our method is
more general.

For each distance measure and pattern size, we
estimated the prior using a database of 480 natural
images. First, outlier noise was added to each image.
To simulate such noise we chose a different image at
random from the test database and replaced between
0% to 50% (the value was chosen uniformly),
with replacement, of the original image pixels with
pixels from the different image in the same relative
position.

For each image we computed the set of distances
between two patterns (each a not too smooth ran-
domly chosen 2D window from the image before the
addition of the noise) and a sliding window over the
noisy image. The prior that was used is a mixture
model of this histogram and a uniform prior (with
a very small probability for uniformity). We used a
mixture model as we had almost no observations of
small distances.

Fig. 9 shows that priors of the same Hamming
distance for different pattern sizes are similar. Fig.
10 shows that as the distance measure becomes
more invariant, the distances are smaller.
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Fig. 9. Estimated cumulative PDFs of priors ofThresholded Absolute
DifferenceHamming distance with pixel similarity threshold equal 20
(pixels with intensity difference greater than 20 are considered non-
similar) for patterns size: (a)15 × 15 (b) 30 × 30 (c) 45 × 45 (d)
60 × 60. Note that the shapes of the priors are similar.

VI. EXPERIMENTAL RESULTS

The proposed frameworks were tested on real
images and patterns. The results show that the
SEQUENTIAL algorithm is fast and accurate, with
or without noise.

Recall that there are two kinds of errors: false
negative (the event of returningnon-similar on a
similar window), and false positive (the event of
returningsimilar on a non-similar window). A win-
dow is defined as similar to the pattern if and only if
the Hamming distance between the window and the
pattern is smaller or equal to the image similarity
threshold,t. Note that in all the experiments (Figs.
1, 3, 4, 5 and 6) the similar windows are also
visually similar to the pattern.



15

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

(a) (b)

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

(c) (d)

Fig. 10. Estimated cumulative PDFs priors ofThresholdedl2 norm
in L*a*b color spaceHamming distance for60 × 60 patterns, with
pixel similarity threshold equal: (a) 100 (b) 300 (c) 500 (d)1000.
Note that as the distance measure becomes more invariant (with a
higher pixel similarity threshold), the distances are smaller.

We set the false positive error bound to zero in all
experiments. Setting it to a higher value decreases
the running time mostly for similar windows. As
it is assumed that similarity between pattern and
image is a rare event, the speedup caused by a
higher bound on the false positive is negligible. We
set the false negative error bound to 0.1%;i.e. out
of 1000 similar windows, only one is expected to be
classified as non-similar. Note that this small error
rate enables the large reduction in the running time.

A typical pattern matching task is shown in Fig. 1.
A non-rectangular pattern of 2197 pixels was sought
in a sequence of 14, 640x480 pixel frames. We
searched for windows with aThresholded Absolute
Difference Hamming distance lower or equal to
0.4× 2197, i.e. less than 40% outlier noise such as
out of plane rotation, shading, spectral reflectance,
occlusion, etc. Two pixels were considered non-
similar if their absolute intensity difference was
greater than 20,i.e. p = 20. The SEQUENTIAL

algorithm was parameterized with P-SPRT (see Sec-
tion IV-D), a uniform prior and false negative error
bound of 0.1%. Using the parameterizedSEQUEN-
TIAL algorithm, the pattern is found in 9 out of 11
frames in which it was present, with an average of
only 19.70 pixels examined per window instead of
2197 needed for the exact distance computation. On
a Pentium 4 3GHz processor, detection of the pat-
tern proceeds at 0.022 seconds per frame. The false

positive error rate was 0%. The false negative error
rate was 0.28%. Note that due to image smoothness,
there are several similar windows in each frame
near the sought object. The errors were mostly due
to missing one of these windows. Although we
use an incorrect (uniform) prior to parameterize
the algorithm, we obtain excellent results. Other
distances such as cross correlation (CC), normalized
cross correlation (NCC),l1, l2, yielded poor results
even though they were computed exactly (the com-
putation took much longer).

More results are given in Figs. 3, 4, 5 and 6. All
of these results are on 640x480 pixel images and use
the SEQUENTIAL algorithm that was parameterized
with P-SPRT (see Section IV-D), a uniform prior
and false negative error bound of 0.1%. These
results are also summarized in Table II. Comparison
of the results using the estimated prior and the
uniform prior is given in Fig. 11.
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Fig. 11. Comparing optimal parameterization of theSEQUENTIAL

algorithm with the estimated prior against optimal parameterization
with a uniform prior in all figure experiments. In (a) the average
number of features sampled per window was slightly smaller with
the uniform prior. However, in (b) the error rate was higher with the
uniform prior. Although higher, the error rate was still usually small.
Thus, the performance using an incorrect (uniform) prior isstill quite
good.

Note that the parameters (pixel similarity thresh-
old, p and relative image similarity threshold,t

|A|
)

are the same for each kind of distance. These param-
eters were chosen as they yield good performance
for images experimentally. They do not necessarily
give the best results. For example, on Fig. 3, using
Thresholded Absolute DifferenceHamming distance
with pixel similarity threshold,p equal 100 and the
image similarity threshold,t equal 0, theSEQUEN-
TIAL algorithm ran only 0.013 seconds. The average
number of pixels examined per window was only
2.85 instead of 1089 needed for the exact distance
computation. The false negative error rate was 0%.
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Another parameter that can be tuned is which pairs
of pixels should setA contain when we use the
Monotonic RelationsHamming distance. In all the
experiments that use this distance, the pairs that
were used are pairs of pixels belonging to edges,i.e.
pixels that have a neighbor pixel, where the absolute
intensity value difference is greater than 80. In all
the experiments (except the experiment in Fig. 5)
two pixels are considered neighbors if they are in
the same5 × 5 neighborhood. In the experiment
in Fig. 5, two pixels are considered neighbors if
they are in the same11× 11 neighborhood because
pairs in the5 × 5 neighborhood did not describe
the pattern well. Thus, all parameters can be tuned
for a specific pattern matching task. However, our
work shows that for each of the proposed members
of the Image Hamming Distance Family there is a
standard set of parameters that usually yield good
performance.

To illustrate the performance of Bayesian sequen-
tial sampling, we also conducted extensive random
tests. The random tests were conducted mainly to
illustrate the characteristics of theSEQUENTIAL

algorithm and to compare its parameterization meth-
ods.

A test database (different from the training
database that was used to estimate priors) of 480
natural images was used. We consider similar win-
dows as windows with a Hamming distance smaller
or equal to 50% of their size;e.g.a 60×60 window
is considered similar to a60 × 60 pattern if the
Hamming distance between them is smaller/equal
to 1800.

For comparison we also developed an optimal
fixed size sampling algorithm,FIXED SIZE (see Ap-
pendix I). Each test of theFIXED SIZE algorithm
or the SEQUENTIAL algorithm in Figs. 15, 16 and
17 was conducted using a different combination of
members of the Image Hamming Distance Fam-
ily and different sizes of patterns. For each such
combination a prior was estimated (see Section
V). In order to parameterize theFIXED SIZE and
the SEQUENTIAL algorithms, we used either the
estimated prior or a uniform prior.

Each test of the parameterized algorithms was
conducted by performing 9600 iterations (20 times
for each image) as follows:

• A random not too smooth 2D window pattern
was chosen from one of the images,Im, from
the test database.

• Outlier noise was added to the image,Im. To
simulate such noise we chose a different image
at random from the test database and replaced
between 0% to 50% (the value was chosen
uniformly), with replacement, of the original
image (i.e. Im) pixels with pixels from the
different image in the same relative position.

• The pattern was sought for in the noisy image,
using the parameterizedSEQUENTIAL algo-
rithm or the parameterizedFIXED SIZE algo-
rithm.

In each test the false negative error rate and the av-
erage number of pixels examined per window were
calculated. Overall, the results can be summarized
as follows:

1) Even with very noisy images theSEQUEN-
TIAL algorithm is very fast and accurate.
For example, the average number of pixels
sampled for pattern matching on60 × 60
patterns with additive noise of up to 20 (each
pixel gray value change can range from -20 to
+20) and outlier noise of up to 50% was only
92.9, instead of 3600. The false negative error
rate was only 0.09% (as mentioned above,
the false positive error rate bound was always
0%).

2) The SEQUENTIAL algorithm is much faster
than theFIXED SIZE algorithm, with the same
error rates. In addition, usually theSEQUEN-
TIAL algorithm is less sensitive to incorrect
priors (see Fig. 15).

3) The performance of the near-optimal solution,
P-SPRT, is good (see Fig. 16).

4) The average number of features examined
per window is slightly smaller with the uni-
form prior. However, the error rate is higher
(although still small). Thus, there is not a
substantial difference in performance when
using an incorrect (uniform) prior (see Figs.
11,17).

To further illustrate the robustness of the method
we conducted another kind of experiment. Five im-
age transformations were evaluated: small rotation;
small scale change; image blur; JPEG compression;
and illumination. The names of the datasets used
arerotation; scale; blur; jpeg; andlight respectively.
The blur, jpeg and light datasets were from the
Mikolajczyk and Schmid paper [14]. Our method is
robust to small but not large geometrical transforms.
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TABLE II

SUMMARY OF FIGURE RESULTS

Fig. (a) (b) (c) (d) (e) (f) (g)
Distance |A| = Max False Average Offline Online
type Set Diff Negative Features Time Time

Size (%) (%) Sampled (seconds)(seconds)

1 20TAD(1) 2197 40 0.28 19.70 0.067 0.022
3 20TAD(1) 1089 40 1.68 12.07 0.018 0.019
4 MR(2) 631 25 0.30 35.28 0.009 0.021
5 MR(2) 9409 25 0.45 39.98 1.219 0.037
6 LD-20TAD(3) 714 5 0.20 16.98 0.007 0.064

(a) Distance types:
1) 20TAD - Thresholded Absolute Difference, with threshold(p) of 20.
2) MR - Monotonic Relations.
3) LD-20TAD - Local Deformationsvariant ofThresholded Absolute Difference, with threshold(p) of 20.

(b) Size of the set of spatial coordinates of features,i.e. number of pixels inThresholded Absolute Differencedistances, or number of pairs

of pixels in Monotonic RelationsHamming distance.

(c) Maximum percentage of pixels, or pairs of pixels, that can be different in similar windows. For example, in Fig. 1, similar windows

Hamming distance is less than( 40
100

)2197 = 878.

(d) The false negative error rate (percentage of similar windows that the algorithm returned as non-similar). For example, in Fig. 1, on

average out of 10000 similar windows, 28 were missed. Note that due to image smoothness, there were several similar windows in each

image near each sought object. The errors were mostly due to missing one of these windows.

(e) Average number of pixels sampled inThresholded Absolute Differencedistances, or average number of pairs of pixels sampled in

Monotonic RelationsHamming distances.

(f) Running time of the parameterization of theSEQUENTIAL algorithm. In addition, inMonotonic Relationsdistances it also includes the

running time of finding the pairs of pixels that belong to edges.

(g) Running time of pattern detection using theSEQUENTIAL algorithm, where each image is 640x480 pixels in size.

Thus, it did not perform well on the geometrical
changes datasets from the Mikolajczyk and Schmid
paper [14]. We created two datasets with small
geometrical transforms: ascaledataset that contains
22 images with an artificial scale change from 0.9
to 1.1 in jumps of 0.01; and arotation dataset
that contains 22 images with an artificial in-plane
rotation from -10◦ to 10◦ in jumps of 1◦ (see for
example Fig. 14).

For each collection, ten rectangular patterns were
chosen from the image with no transformation. The
pairs that were used in the set of each pattern were
pairs of pixels belonging to edges,i.e. pixels that
had a neighbor pixel, where the absolute intensity
value difference was greater than 80. Two pixels,
(x2, y2), (x1, y1) are considered neighbors if their
l∞ distance:max(|x1 − x2|, |y1 − y2|) is smaller
or equal to 2. We searched for windows with a
Monotonic RelationsHamming distance lower or
equal to0.25 × |A|. In each image we considered

only the window with the minimum distance as
similar, because we knew that the pattern occurred
only once in the image. TheSEQUENTIAL algorithm
was parameterized using P-SPRT (see Section IV-
D) with input of a uniform prior and a false negative
error bound of 0.1%. We repeated each search of a
pattern in an image 1000 times.

We defined two new notions of performance: miss
detection error rate and false detection error rate.
As we know the true homographies between the
images, we know where the pattern pixels are in
the transformed image. We denote a correct match
as one that covers at least 80% of the transformed
pattern pixels. A false match is one that covers
less than 80% of the transformed pattern pixels.
Note that there is also an event of no detection
at all if the SEQUENTIAL algorithm does not find
any window with aMonotonic RelationsHamming
distance lower or equal to0.25 × |A|. The miss
detection error rate is the percentage of searches
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of a pattern in an image that does not yield a
correct match. The false detection error rate is the
percentage of searches of a pattern in an image
that yields a false match. Note that in the random
tests that illustrated the performance of the Bayesian
sequential sampling, it was not possible to use these
error notions. In these tests we used a large number
of patterns that were chosen randomly, thus we
could not guarantee that the patterns did not occur
more than once in these test images.

In the light and jpeg tests, the performance was
perfect; i.e. 0% miss detection rate and 0% false
detection rate. In theblur test, only one pattern
was not found correctly in the most blurred image
(see Fig. 14). The miss detection rate and false
detection rate for this specific case was 99.6%. In all
other patterns and images in theblur test, the miss
detection rate and false detection rate was 0%. In
the scaletest, there was only one pattern with false
detection in two images with scale 0.9 and 0.91. In
the rotation test, there was only one pattern with
false detection in images with rotation smaller than
-2◦ or larger than +2◦. Miss detection rates in the
scaleandrotation tests (see Fig. 12) were dependent
on the pattern. If the scale change or rotation was
not too big, the pattern was found correctly.

The average number of pair of pixels that the
SEQUENTIAL algorithm sampled per window was
not larger than 45 in all of the above tests. The
average was 29.38 and the standard deviation was
4.22. In general, the number of samples decreased
with image smoothness;e.g.it decreased with image
blur, lack of light and JPEG compression (see
for example Fig. 13). Note that theSEQUENTIAL

algorithm using theMonotonic RelationsHamming
distance stops as soon as there are not enough edge
pairs of pixels in the same spatial position as in
the pattern. Smoothness decreases the number of
edge pairs of pixels; thus it decreases the average
number of samples that theSEQUENTIAL algorithm
samples.

Finally, Table III compares the running time of
the two kinds of offline phases.i.e. it compares the
running time of finding the optimal decision matrix
(see Section IV-C) with the running time of find-
ing the P-SPRT (near-optimal) decision matrix (see
Section IV-D). Thus finding the P-SPRT decision
matrix is an order of magnitude faster. All runs were
conducted on a Pentium 4 3GHz processor.
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Fig. 12. (a) Miss detection error rates on thescale test. (b) Miss
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VII. CONCLUSIONS

This paper introduced the “Image Hamming
Distance Family”. We also presented a Bayesian
framework for sequential hypothesis testing on fi-
nite populations that designs optimal sampling al-
gorithms. Finally, we detailed a framework that
quickly designs a near-optimal sampling algorithm.
We showed that the combination of an optimal or
a near-optimal sampling algorithm and members of
the Image Hamming Distance Family gives a robust,
real time, pattern matching method.

Extensive random tests show that theSEQUEN-
TIAL algorithm performance is excellent. TheSE-
QUENTIAL algorithm is much faster than the
FIXED SIZE algorithm with the same error rates. In
addition, theSEQUENTIAL algorithm is less sensi-
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TABLE III

OFFLINE RUNNING TIME COMPARISON

|A| - features’ coordinates set size 500 1000 1500 2000 2500 3000

Offline P-SPRT (seconds) 0.005 0.018 0.042 0.075 0.14 0.17
Offline optimal (seconds) 7.510 49.220 154.520 653.890 2012.40 3504.97

(a)

(b)

Fig. 14. (a) The single false detection event on theblur test. (b) An
example of detection on therotation test. The image is 5◦ artificially
in-plane rotated.

tive to incorrect priors. The performance of the near-
optimal solution, P-SPRT, is good. It is noteworthy
that performance using an incorrect (uniform) prior
to parameterize theSEQUENTIAL algorithm is still
quite good.

The technique explained in this paper was de-
scribed in an image pattern matching context. How-
ever we emphasize that this is an example appli-
cation. Sequential hypothesis tests on finite popula-
tions are used in quality control (e.g.[53]) , sequen-
tial mastery testing (e.g. [54], [55]) and possibly
more fields. Thus the method can be used as is to
produce optimal sampling schemes in these fields.

The project homepage is at:http://www.cs.
huji.ac.il/∼ofirpele/hs
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Fig. 15. Comparing theFIXED SIZE algorithm with theSEQUENTIAL algorithm. Both algorithms were parametrized using the estimated
or the uniform prior. TheSEQUENTIAL algorithm is much faster than theFIXED SIZE algorithm, with the same error rates. In addition, the
SEQUENTIAL algorithm is less sensitive to incorrect (uniform) priors.In the top row we see that the average number of pixels examined per
window was smaller using theSEQUENTIAL algorithm. In the bottom row we see that the error rate was thesame in both algorithms. We
can also see that theSEQUENTIAL algorithm is less sensitive to incorrect (uniform) priors (note that when the pixel similarity threshold is
equal to 0, 3 and 5 the number of samples using theFIXED SIZE algorithm increases when using the uniform prior). All tests were conducted
using theThresholded Absolute DifferenceHamming distance with various pixel similarity thresholdsp.
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APPENDIX I
FIXED SIZE FRAMEWORK

We first present theFIXED SIZE algorithm that
tests for similarity using a fixed size sample. Then
we evaluate its performance. Finally we show how
to find the optimal parameters for theFIXED SIZE

algorithm.

A. TheFIXED SIZE algorithm

The FIXED SIZE algorithm has threshold param-
etersl, u and a fixed sample sizen. The framework
computes optimall, u and n offline. Then, the
algorithm can quickly decide whether a pattern and
a window are similar;i.e. if their Hamming distance
is smaller or equal to the image similarity threshold,
t.

The algorithm samplesn corresponding features
from the pattern and the window, computes their
Hamming distance and decides according to the
result whether to returnsimilar, non-similar or to
compute the exact distance.

Algorithm 6 FIXED SIZEl,u,n,t(pattern,window, A)
k ⇐ 0
for i = 1 to n do

random sample uniformly and without replace-
ment (x, y)m from A

k ⇐ k + sim(pattern, window, (x, y)m)
if k ≤ l then

return similar
if k ≥ u then

return non-similar
return (HammingDistanceA(pattern, window)) ≤ t

B. Evaluating performance for fixed parameters
l, u, n

The performance of the algorithm is defined by its
expected number of examined features and its error
probabilities. The computation is similar to the one
in the SEQUENTIAL algorithm (see Section IV):

Pl,u,n(false negative) =

∑n
k=u

(
n

k

)
ΩS[k, n]

P (D ≤ t)
(10)

Pl,u,n(false positive) =

∑l
k=0

(
n

k

)
ΩNS[k, n]

P (D > t)
(11)

El,u,n(#examined features) =

n + P (compute exact)(|A| − n) =

n +
u−1∑

k=l+1

(
n

k

)
(ΩS[k, n] + ΩNS [k, n])(|A| − n)

(12)

C. Finding optimal parametersl, u, n for the algo-
rithm

We first find optimal thresholdsl, u for a given
sample size,n. Our goal is to minimize the expected
number of examined features given bounds on the
error probabilities,α, β:

arg min
l,u

El,u(#examined features)

s.t :

Pl,u(false negative) ≤ α

Pl,u(false positive) ≤ β

Fixed number of samplesn

(13)

Pl,u(false negative) (Eq. 10) monotonically de-
creases with the thresholdu (the number of non-
negative summands decreases).Pl,u(false positive)
(Eq. 11) monotonically increases with the threshold
l (the number of non-negative summands increases).
El,u(#examined features) (Eq. 12) monotonically
decreases with the thresholdu and monotonically
increases with the thresholdl. Thus, we wantl to
be as large as possible, andu to be as small as
possible.

The algorithm that chooses the optimalu, Alg.
7, starts by takingu = n + 1 and decreases it until
Pl,u(false negative) is too high. The algorithm that
chooses optimall, Alg. 8 starts by takingl = −1
and increases it untilPl,u(false positive) is too high.

Algorithm 7 opt u(n, t, α, P )
err ⇐ 0
nCk ⇐ 1 {The current n choose k}
for k = n to 0 do

err ⇐ err + nCk × ΩS [k,n]
P (D≤t)

if err > α then
return k + 1

nCk ⇐ nCk ×
(

k
n−k+1

)

return k
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Algorithm 8 otp l(n, t, β, P )
err ⇐ 0
nCk ⇐ 1 {The current n choose k}
for k = 0 to n do

err ⇐ err + nCk × ΩNS [k,n]
P (D>t)

if err > β then
return k − 1

nCk ⇐ nCk ×
(

n−k
k+1

)

return k

In order to find the optimaln we compute optimal
l, u and the expected number of examined features
for eachn = 1 . . . |A|. Finally, we choose then
that minimizes the expected number of examined
features. Note that the search can be terminated
as soon as the current minimum of the expected
number of examined features is smaller thann.

The intermediate sumsΩS [k, n] and ΩNS[k, n]
(see Eq. 2) are computed for all possiblek and
n with a dynamic programming algorithm with a
time complexity of O(|A|3). The algorithms that
compute optimall, u for eachn (Algs. 8, 7) have
a time complexity of O(|A|). These algorithms run
a maximum of |A| times. Thus, finding optimal
n, l, u has a time complexity of O(|A|3). It should be
noted that the search for the optimal parameters is
done offline. The user can employ theFIXED SIZE

algorithm parameterized with the optimall, u, n, to
quickly detect patterns in images.

APPENDIX II
HOUGH TRANSFORM COMPUTATION OF

HAMMING DISTANCE

For simplicity we show how to use the Hough
transform [42] to compute theThresholded Absolute
Difference Hamming Distance (see Section III-B)
between a pattern and all windows in a 256 gray
level image. The generalization to other members
of the Image Hamming Distance Family is easy. We
also analyze its time complexity.

List of symbols:
A = Set that contains spatial coordinates
of pixels. |A| is the size of this set.
RIm = Number of rows in large image.
CIm = Number of columns in large image.
L = A 256 array that contains lists of all
pixel coordinates in the pattern that are
similar to a specific gray value.

p = Pixel similarity threshold of the
Thresholded Absolute DifferenceHam-
ming Distance.
H = The Thresholded Absolute Difference
Hamming Distance Map,i.e. H[r, c] is
theThresholded Absolute DifferenceHam-
ming Distance between the pattern and the
window of the imageIm whose top left
pixel is [r, c].

Algorithm 9 HoughTAD(pattern,image,p)
L[0 . . . 255] ⇐ empty list of indices.
for (x, y) ∈ A do

for g = (pattern[x, y]−p) to (pattern[x, y]+p)
do

L[g].insert([x, y])
H[0 . . . RIm, 0 . . . CIm] ⇐ |A|
for r = 1 to RIm do

for c = 1 to CIm do
for it = (L[image[r, c]].begin) to
(L[image[r, c]].end) do

H[r−it.r, c−it.c] ⇐ H[r−it.r, c−it.c]−1

The first stage of Algorithm 9 which computes
the array of lists, L has a time complexity of
O(|A|p). The second stage which computes the
Hamming distance map, H has an expected time
complexity of O(RImCIm(|A| − E[D])), where
D is the random variable of the Hamming dis-
tance. Total expected time complexity isO(|A|p +
RImCIm(|A|−E[D])). Average expected time com-
plexity per window isO( |A|p

CImRIm
+ |A| − E[D]).

Since usually |A|p
CImRIm

is negligible the average
expected time complexity per window isO(|A| −
E[D])

APPENDIX III
COMPUTATION OF PROBABILITIES OF THE

SEQUENTIAL ALGORITHM

List of symbols:
• M = SEQUENTIAL algorithm decision matrix.

M [k, n] is the algorithm decision after sam-
pling k non-similar corresponding features out
of a total ofn sampled corresponding features.
The decision can beNS=return non-similar,
S=returnsimilar or C=continue sampling. See
the graphical representation in Fig. 8.

• D = Random variable of the Hamming dis-
tance.
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• t = Image similarity threshold,i.e. if the Ham-
ming distance of two images is smaller or
equal to t, then the images are considered
similar. Otherwise, the images are considered
non-similar.

• ΨM [k, n] = Number of paths from the point
(0, 0) to the point(k, n) that do not touch a
stopping point (S, NS) in Fig. 8 on page 10.

• ek,n= The event of samplingk non-similar
corresponding features out of a total ofn

sampled corresponding features, in any spe-
cific order (for example, where the non-similar
corresponding features are sampled first). Note
that all orders of sampling have the same
probability. See Eq. 1 on page 10.

• ΩS[k, n], ΩNS[k, n] = Intermediate sums de-
fined in Eq. 2 on page 11.

PM (false negative) (14)

= PM (returnnon-similar|images are similar) (15)

= PM (returnnon-similar|D ≤ t) (16)

=

|A|∑

d=0

PM (returnnon-similar, D = d|D ≤ t) (17)

=
1

P (D ≤ t)

t∑

d=0

PM (returnnon-similar, D = d) (18)

=
1

P (D ≤ t)

t∑

d=0

∑

(k,n):
M(k,n)=NS

Ψ[k, n]P (ek,n, D = d)

(19)

=
1

P (D ≤ t)

∑

(k,n):
M(k,n)=NS

Ψ[k, n]

t∑

d=0

P (ek,n, D = d)

(20)

=
1

P (D ≤ t)

∑

(k,n):
M(k,n)=NS

Ψ[k, n]ΩS[k, n] (21)

PM (false positive) (22)

= PM (returnsimilar|images are non-similar) (23)

= PM (returnsimilar|D > t) (24)

=

|A|∑

d=0

PM (returnsimilar, D = d|D > t) (25)

=
1

P (D > t)

|A|∑

d=t+1

PM (returnsimilar, D = d) (26)

=
1

P (D > t)

|A|∑

d=t+1

∑

(k,n):
M(k,n)=S

Ψ[k, n]P (ek,n, D = d)

(27)

=
1

P (D > t)

∑

(k,n):
M(k,n)=S

Ψ[k, n]

|A|∑

d=t+1

P (ek,n, D = d)

(28)

=
1

P (D > t)

∑

(k,n):
M(k,n)=S

Ψ[k, n]ΩNS [k, n] (29)

EM [#samples] (30)

=

|A|∑

d=0

EM [#samples, D = d] (31)

=

|A|∑

d=0

∑

(k,n):
M(k,n)∈{S,NS}

Ψ[k, n]P (ek,n, D = d)n (32)

=
∑

(k,n):
M(k,n)∈{S,NS}

Ψ[k, n](ΩS [k, n] + ΩNS [k, n])n (33)

APPENDIX IV
COMPUTATION OF EXPECTED ADDITIVE LOSS IN

THE BACKWARD INDUCTION ALGORITHM

Let w1 and w0 be the loss weights for false
positive error and false negative error respectively.
The expected additive loss for each decision given
that we sampledn samples, out of whichk were
non-similar is:

E[addLoss(S)|k, n] = P (D > t|ek,n)w1 (34)

=
P (D > t, ek,n)

P (ek,n)
w1 (35)

=

∑|A|
d=t+1 P (D = d, ek,n)
∑|A|

d=0 P (D = d, ek,n)
w1 (36)

=
ΩNS [k, n]

ΩS [k, n] + ΩNS [k, n]
w1 (37)

E[addLoss(NS)|k, n] = P (D ≤ t|ek,n)w0 (38)

=
P (D ≤ t, ek,n)

P (ek,n)
w0 (39)

=

∑t

d=0 P (D = d, ek,n)
∑|A|

d=0 P (D = d, ek,n)
w0 (40)

=
ΩS [k, n]

ΩS [k, n] + ΩNS [k, n]
w0 (41)
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E[addLoss(C)|k, n] = (42)

=1 + P (next feature similar|ek,n)addLossOpt(k, n + 1)+
(43)

P (next feature non-similar|ek,n)addLossOpt(k + 1, n + 1)
(44)

=1 +
P (next feature similar, ek,n)

P (ek,n)
addLossOpt(k, n + 1)+

(45)

P (next feature non-similar, ek,n)

P (ek,n)
addLossOpt(k + 1, n + 1)

(46)

=1 +
P (ek,n+1)

P (ek,n)
addLossOpt(k, n + 1)+ (47)

P (ek+1,n+1)

P (ek,n)
addLossOpt(k + 1, n + 1) (48)

=1 +
ΩS [k, n + 1] + ΩNS[k, n + 1]

ΩS [k, n] + ΩNS[k, n]
addLossOpt(k, n + 1)+

(49)

ΩS [k + 1, n + 1] + ΩNS[k + 1, n + 1]

ΩS [k, n] + ΩNS[k, n]
× (50)

addLossOpt(k + 1, n + 1) (51)

APPENDIX V
BACKWARD INDUCTION SOLUTION THEOREMS

Theorem 1:Let M∗ be a decision matrix which
is the solution to Eq. 8. Then it is the solution to
the original minimization problem Eq. 7 withα =
PM∗(false negative) andβ = PM∗(false positive).

Proof: Let M ′ be another decision matrix of
the same size and smaller/equal error probabilities.
Then:

loss(M∗, w0, w1)

= PM∗(false negative)P (D ≤ t)w0+ (52)

PM∗(false positive)P (D > t)w1+

EM∗ [#samples]

≤ PM ′ (false negative)P (D ≤ t)w0+ (53)

PM ′ (false positive)P (D > t)w1+

EM ′ [#samples]

≤ PM∗(false negative)P (D ≤ t)w0+ (54)

PM∗(false positive)P (D > t)w1+ (55)

EM ′ [#samples]

m

EM∗ [#samples] ≤ EM ′ [#samples]

Explanations:
(52) Definition of theloss function (Eq. 8)
(53) M∗ is optimal (Eq. 8)
(54) PM ′(false negative) ≤ PM∗(false negative)

(55) PM ′(false positive) ≤ PM∗(false positive)

Theorem 2:Let M∗ be the optimal decision ma-
trix returned by Alg. 3 for somew0, w1. If w0 =

|A|
αP (D≤t)

then PM∗(false negative) ≤ α. If w1 =
|A|

βP (D>t)
thenPM∗(false positive) ≤ β

Proof: Let M ′ be a decision matrix such that
the SEQUENTIAL algorithm parametrized with it
always returns the true answer by sampling all the
corresponding features. Then:

|A| = Loss(M ′, w0, w1) (56)

≥ Loss(M∗, w0, w1) (57)

≥ PM∗(false negative)P (D ≤ t)w0 (58)

= PM∗(false negative)P (D ≤ t)
|A|

αP (D ≤ t)
(59)

m

PM∗(false negative) ≤ α

Explanations:
(56) loss for taking all samples
(57) M∗ is optimal
(58) part of sum of non-negatives

(59) w0 = |A|
αP (D≤t)

The proof of if w1 = |A|
βP (D>t)

then
PM∗(false positive) ≤ β is similar.

APPENDIX VI
COMPUTATION OF PROBABILITIES FOR THE

P-SPRTFRAMEWORK

The likelihood ratio derivation:

λ(ek,n) =
P (ek,n|D > t)

P (ek,n|D ≤ t)
(60)

=

∑|A|
d=t+1 P (ek,n, D = d|D > t)
∑t

d=0 P (ek,n, D = d|D ≤ t)
(61)

=

∑|A|
d=t+1

P (ek,n,D=d,D>t)
P (D>t)∑t

d=0
P (ek,n,D=d,D<t)

P (D≤t)

(62)

=

(
P (D ≤ t)

P (D > t)

)(∑|A|
d=t+1 P (ek,n, D = d)
∑t

d=0 P (ek,n, D = d)

)

(63)

Explanations:
(61) disjoint and complementary events
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(62) conditional probability definition

The initialization of the cache (in Alg. 5) is:

P (e1,1, D = d) = P (e1,1|D = d)P (D = d) (64)

=
d

|A|
P (D = d) (65)

The update of the cache (in Alg. 5), whereb = 0
or 1, is:

P (ek+b,n+1, D = d) (66)

= P (D = d)P (ek+b,n+1|D = d) (67)

= P (D = d)P (ek,n|D = d)P (next b|ek,n, D = d) (68)

= P (ek,n, D = d)P (next b|ek,n, D = d) (69)

where:

P (next 0|ek,n, D = d) (70)

= min

(
1,

max
(
0, ((|A| − d) − (n − k))

)

|A| − n

)
(71)

P (next 1|ek,n, D = d) (72)

= min

(
1,

max
(
0, (d − k)

)

|A| − n

)
(73)


