
Multimedia Systems manuscript No.
(will be inserted by the editor)

Adaptation Logic for HTTP Dynamic Adaptive Streaming using
Geo-Predictive Crowdsourcing for Mobile Users

Ran Dubin · Amit Dvir · Ofir Pele · Ofer Hadar ·
Itay Katz · Ori Mashiach

Received: date / Accepted: date

Abstract The increasing demand for video streaming services with a high Quality of Experience (QoE)
has prompted considerable research on client-side adaptation logic approaches. However, most algorithms
use the client’s previous download experience and do not use a crowd knowledge database generated by
users of a professional service. We propose a new crowd algorithm that maximizes the QoE. We evaluate
our algorithm against state-of-the-art algorithms on large, real-life, crowdsourcing datasets. There are
six datasets, each of which contains samples of a single operator (T-Mobile, AT&T or Verizon) from a
single road (I100 or I405). All measurements were from Android cellphones. The datasets were provided
by WeFi LTD and are public for academic users. Our new algorithm outperforms all other methods in
terms of QoE (eMOS).

Keywords Dynamic Adaptive Streaming over HTTP, Adaptic Logic, Crowdsourcing, Geo-Predictive

1 Introduction

Dynamic Adaptive Streaming over HTTP (DASH) [1] is the HTTP Adaptive Streaming (HAS) standard.
It has recently been adopted by YouTube (Google) and Netflix. DASH splits a video into chunks and
encodes each into several quality representations.

A client’s DASH application often has a smart Adaptation Logic (AL) module. The AL module is
responsible for selecting the most suitable quality representation to enhance the client’s Quality of Ex-
perience (QoE) while considering factors such as the client’s buffer and playback delay. QoE is affected
by factors such as the number of quality changes and their sizes. There is a tradeoff between increas-
ing the video quality and buffering additional video segments. A client’s player often buffers a high
number of segments to overcome network outages. Most current AL methods [2–10] estimate the next
suitable segment based on estimates of previous segments without taking into account the future network
characteristics. However, knowledge of geo-location network conditions can enable better decisions.

The term crowdsourcing was introduced by Howe [11] who defined crowdsourcing as the act of taking a
task traditionally performed by a designated agent (such as an employee or a contractor) and outsourcing
it by making an open call to an undefined but large group of people, especially from an online community.
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In the case of video adaptive streaming, crowdsourcing makes it possible to collect mobile network data
anonymously and automatically. This is done using an application especially designed to improve the
AL decision. Neidhardt et al. [12] reported that using many of the existing open datasets leads to low
accuracy because of extreme outliers and few measurements for some of the cells. They noted that cellular
location providers do not provide their complete data.

In this work, we present real-world, crowdsourcing datasets and test our proposed solution against
state-of-the-art algorithms on them. Our work main goal is improving quality of experience while traveling
without a known destination. We present six datasets, each of which contains samples of a single operator
(T-Mobile, AT&T or Verizon) and from a single road (I100 or I405). All measurements were from Android
cellphones of various users. The datasets were provided by WeFi LTD. The WeFi application collects
granular information on mobile network performance and application usage from millions of devices,
down to a 10× 10 meter geographical resolution. The datasets are public for academic users [13].

There are also disadvantages to relying on a crowdsourcing service. For example, a crowdsourcing
service might not be reliable or trustworthy. This problem may be mitigated by relying on a trusted and
reliable cloud service such as Amazon Web Services (AWS).

We propose a Geo-Predictive Adaptive Logic (GPAL) algorithm based on crowdsourcing data and
show that it outperforms the state-of-the-art: Riiser [14], MASERATI [15], n-Predict [16], 1-Predict [16],
PBA [17], MAL [10] and MaxBW [2] algorithms. It is worth noting that our crowd sourcing data were
generated by users of a large scale, professional service and not by simulation.

The remainder of this paper is organized as follows: Section 2 summarizes related work. Section
3 presents our crowd algorithm. Section 4 details our dataset characteristics. Section 5 describes the
experimental setup and results. Section 6 discusses future work and conclusions.

2 Related Work

DASH AL is a well-investigated research topic. AL research can be roughly divided into two different
groups: past estimate based AL and crowdsourcing based AL. Most work has investigated past estimate
algorithms. Müller et al. [8] suggested a buffer based decision algorithm that uses the previous segment
bandwidth estimates and the user’s current buffer duration to select a suitable quality representation for
downloading. The Multicast Adaptation Logic (MAL) algorithm [10] uses a double Exponential Moving
Average (EMA) algorithm. One smooths the buffer size estimate and the other smooths the bandwidth
estimate. This is done to select the most suitable segment. Although MAL was designed for multicast,
it achieves good performance in unicast networks [10].

Crowdsourcing AL methods have attracted much less attention than past estimate based methods.
Hung et al. [18] proposed a video streaming control mechanism based on location to overcome signal
variations in train tunnels and underground areas. Geo-location frameworks that have the ability to
predict future network conditions based on a bandwidth lookup service and similar concepts can be
found in [19–22,16]. Acharya et al.[23] evaluated rate-adaptation in a vehicular network based on signal
strength and throughput at a location as an indicator of congestion. Curcio et al. [19] and Singh et al. [20]
suggested server-side prediction algorithms for RTP streaming. Curcio et al. [19] suggested a framework
with a predictive server that obtains route, speed, location and throughput from the client. However, this
study was based on simulation rather than real-world data. Singh et al. [20] proposed building a Network
Coverage Map Service (NCMS) to make rate-control decisions over a Real Time Protocol (RTP) using a
server-side adaptation algorithm. Singh et al. however did not investigate performance on datasets with
a higher geographical coverage or more diverse network connectivity conditions.

Yao et al. [21] showed that past bandwidth information is a good indicator of the actual bandwidth
at a given location. Yao et al. found that location had greater influence than time, based on traces.
Nevertheless, their performance evaluation did not take into account the number of switches or the
playout buffer size. Furthermore, it was gathered from a small set of vehicles.

Riiser et al. [22] proposed constantly monitoring the receiver’s download rate and the associated
GPS positional data to report a central database. This was argued to allow the user to better predict
the near-future bandwidth availability and to create a video playout schedule based on the likely future
availability bandwidth. The user bases his near future decision on the available bandwidth during the
last interval to predict the available bandwidth during the next interval. The authors concluded that
using past bandwidth lookups led to far fewer rebuffering events and stabler quality. Evensen et al.



[24] suggested using the geographical location information to predict available bandwidth accurately
since the bandwidth is usually dependent on the user location. However, both systems [22,24] often lead
to inaccurate bandwidth prediction or pay little attention to user environments (e.g., time, humidity,
speed). Therefore, Han et al. [15] investigated the extent to which the available user mobile channel
bandwidth was affected by constraints including location, time, speed, humidity and cellular network
type (3G/4G). Their scheme, called MASERATI, outperformed Pure-DASH and LoDASH, where Pure-
DASH (equivalent to [22]) only used the download throughput and LoDASH (equivalent to [24]) used
location based bandwidth predictions as in [24,22].

Liu et al. [25] suggested comparing the segment fetch time with the media duration contained in the
segment to detect congestion and probe the spare network capacity. Liu’s algorithm used conservative
step-wise up switching and aggressive down switching. Hao et al.[16] suggested two algorithms: 1-predict
and n-predict. The 1-predict algorithm uses the playout buffer and the next prediction to determine the
most suitable representation to download. The n-predict algorithm uses the average throughput of the
next n time steps as the algorithm’s current prediction. Hao et al. [16] evaluated Liu et al.’s algorithm
and found that it achieved stable video quality but with a very low average bitrate. They showed
that n-predict outperformed Liu et al’s algorithm as well as 1-predict. Zou et al. [17] demonstrated
that leveraging bandwidth predictions can significantly improve QoE. They designed an algorithm that
combined bitrate prediction and rate stabilization. They showed that during startup, their algorithm
had more than four times better video quality than heuristic-based algorithms.

Riiser et al. [14] recorded 3G mobile traces in Oslo, Norway, while traveling on different types of public
transportation (metro, tram, train, bus and ferry). The traces, measured on the bus path between Ljan

Table 1 Comparison of Algorithms
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Protocol
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ment
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rithms
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Singh et
el. [20] -
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Stream
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Request
(TMMBR)
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Buffer
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dia rate
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No adaptation
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switching GLASS,
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GLASS, Omni-
scient (Optimal)
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Yao et al. [21]
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ceives a
sequence of
bandwidth
averages for
its whole path

Client
plans
which
quality
levels to
use

Apple Live
HTTP
mechanism

Buffer-Based
Reactive, History-
Based Prediction,
Omniscient Pre-
diction (Optimal)

Buffer size, se-
lected representa-
tions
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DASH
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Location-based
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Playout Success
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Segments, Fre-
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Changes, Degree of
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Level

Hao et al.[16]
- 1-predict, n-
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DASH Achieving con-
tinuous playback
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additional func-
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The server
calculates
the possible
bandwidth
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Source Me-
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and Oslo central station, Norway, had a total duration of about 220 minutes (almost 12500 samples).
The available bandwidth was between 202bps and 6335kbps with an average of 2192kbps and STD of
1317kbps. This dataset has been used in several papers such as [30]. For our crowd sourcing algorithm
we needed a bigger dataset both for the entire road and for every part of the road. Moreover, we had
samples from different days of the week and various mobile devices. Therefore, we decided to only use
our dataset. Note that, our Dummynet server (see Section 5.2) was equivalent to the Apache server in
[14] so as to produce the same network conditions for all tests. Table 1 summarizes the papers presented
above.

3 The Geo-Predictive Adaptive Logic (GPAL) Algorithm

We define the user playout buffer as B(t). The goal of the AL modules is to maximize the overall quality
of the stream, while eliminating rebuffering (B(t) > 0). We measure the quality in terms of its eMOS
score [31,32] as can be seen in Eq. 1.

eMOS = max (0.81µ− 0.96σ − 4.95φ+ 0.17, 0)

φ =
7 max

(
ln(Ffreq)

6 + 1, 0
)

+
min(Favg, 15)

15

8

(1)

The eMOS combines the re-buffering effect on the users experience with the influence of the selected
quality representation (for more information see [31]). The eMOS range is between 0 to 5.84 (the highest
quality). In these equations Ffreq and Favg represent the number of re-buffering events relative to the
number of segments and the average duration over all re-buffering, respectively. The quality effect on
the user is expressed as (µ) the normalized average quality level and the (σ) the standard deviation
of the normalized quality level. Note that eMOS[31,32] is an estimated MOS based on several video
parameters such as quality and re-buffering. In our model, we used an estimated Mean Opinion Score
(eMOS) formula (Eq. 1) based on the work of Claeys et al. [31].

Finally, our algorithm tries to maximize the eMOS subject to constrains as shown in Eq. 2.

max(eMOS) s.t :

∀t > tstart 0 < B(t) ≤ Bmax

(2)

The GPAL algorithm, Algorithm 1, determines the representation of the next media segment to be
fetched. The algorithm estimates the current segment download path based on the client’s location and
speed. It predicts the future path network bandwidth conditions based on the client’s playout buffer and
the crowd estimated bandwidth. The algorithm calculates the playout buffer fullness ratio (Bp) based
on the maximum between the current buffer levels divided by the maximum buffer size allocation. The
bandwidth coefficients (thresholds) in our algorithm are taken from MaxBW [2].

4 Dataset

The WeFi datasets contain samples from the California I110 and I405 interstates. The I110 is an interstate
highway in the Los Angeles area and connects San Pedro and the port of Los Angeles with downtown
Los Angeles and Pasadena. The I405 is a major north-south interstate highway in Southern California.
Table 2 summarizes the number of samples on each road over a operator.

Each sample of the dataset contains longitude, latitude, data throughput and data size. A large number
of different applications generated the data. Most of the applications either regularly send low rate

Table 2 Number of samples of operator users on a road

I110 I405
T-Mobile 40667 61516

AT&T 20312 45028
Verizon 22032 38448



Algorithm 1 GPAL: Geo Predictive Adaptation Logic Algorithm
1: g: current mobile geo-location.
2: v: current mobile speed.
3: w: highest quality average file size.
4: f : last downloaded segment throughput estimate.
5: Xbw(t): bandwidth estimate for the current time (t).
6: ρ: predicted mobile bandwidth for next segment.
7: B(t): current playout buffer duration.
8: Bp: playout buffer fullness ratio.
9: Bmax: maximum buffer size.

10: τ : selected quality for download.

11: Bp =
B(t)
Bmax

12: if first segment then
13: Bp = 0.5
14: end if

15: segLen =

{
250m if first segment

vw
f

else

16: newRegion = circle whose middle point is g and its radius is segLen
17: Xbw(t) = getCrowdBWAverage(newRegion)
18: if Bp < 0.2 then
19: ρ = 0.3Xbw(t)
20: else if Bp < 0.4 then
21: ρ = 0.5Xbw(t)
22: else if Bp < 0.55 then
23: ρ = Xbw(t)
24: else
25: ρ = (1 + 0.5Bp)Xbw(t)
26: end if
27: τ = the highest bit rate representation for which τ < ρ
28: return τ

updates or are in the idle state (sending keep-alive messages). Thus, most of the samples’ data throughput
are significantly lower than the real channel throughput. Thus, for each road interval x we estimate its
channel throughput, Ex, using Eq 3.

Ex =

∑
s∈xDs ·As∑

s∈xDs
(3)

where Ds is sample s’ data size and As is sample s’ data throughput. This estimate gives more weight to
high data throughput as there are more data transmitted in high data throughput. It is noteworthy that
practically all samples of long-duration TCP connections are the ones that are used almost exclusively
for the estimation of the absolute throughput. WeFi used our equation and verified experimentally that
the estimate is accurate. Figs. 1-2 depict data throughputs vs. estimated channel throughputs along the
roads (for 12 meter segments). We can see that the estimated channel throughput varies along the roads
and are high enough for video streaming in different video quality representations. The dataset was split
into the different operators. Then, each of these datasets was split into a train set and a test set. The
train set contained samples from Wednesday, Thursday, Friday and Saturday. The test set contained
samples from Sunday, Monday and Tuesday. The train sets were used as the crowd source data and the
test sets were used for bandwidth generation using the testing phase via Dummynet [33].

4.1 Interstate I110

The interstate heat map is illustrated in Fig. 3(a) which shows that the road throughput can vary between
0.5− 5[Mb/s]. Fig. 3(b) depicts the measured bandwidth of the path (average and STD). We define this
bandwidth path as I110.

The median throughput of the interstate is 0.86[Mb/s], the average throughput is 1.585[Mb/s] and
the STD is 2. That is, the path has many fluctuations. Thus, it is challenging for adaptive streaming
clients to adapt to its network conditions.



Fig. 1 I110 channel throughput (Ex) vs. data throughput (As)

Fig. 2 I405 channel throughput (Ex) vs. data throughput (As)

Fig. 3(c) depicts the throughput density and the sample densities along the route. We split the
throughput density into fixed bins from 0 to the maximum observed throughput, 10[Mb/s]. It is clear
that lower throughput in the ranges of 0 − 2[Mb/s] are more likely while throughput above 5[Mb/s]
are less common. Fig. 3(d) shows the sample densities along the route. From 23km the sample densities
decrease.

4.2 Interstate I405

The I405 interstate is shorter but has a higher number of samples than the I110 interstate (see Table 2).
The interstate heat map is illustrated in Fig. 4(a) which shows that the road throughput varies between
0.5− 5[Mb/s]. Fig. 4(b) depicts the measured bandwidth of the path (average and STD). We define this
bandwidth path as I405A.

The median throughput of the interstate is 1.97[Mb/s], the average throughput is 2.63[Mb/s] and
the STD is 2.15. The I405 interstate has a higher throughput average than I110. The STD is slightly
higher.

Fig. 4(c) illustrates the throughput density and the sample densities along the route. We split the
throughput density into fixed bins from 0 to the maximum observed throughput 10[Mb/s]. The table
shows that the I405 throughput density is different from the I110 throughput density and the throughput
is better spread between 0.5− 2.5[Mb/s]. Fig. 4(d) depicts the density of the samples along the route.



(a) I110 throughput heat map (b) I110 path positioning

(c) Bandwidth entropy (PMF) analysis (d) Samples’ density entropy (PMF) analysis

Fig. 3 Interstate I110 dataset detailed depiction.

(a) I405 throughput heat map. (b) I405 path positioning

(c) Bandwidth entropy (PMF) analysis (d) Samples’ density entropy (PMF) analysis

Fig. 4 Interstate I405 dataset detailed depiction.



Fig. 5 Experimental setup diagram

5 Experiments and Results

We describe our experimental setup and video representation information in Section 5.1. We discuss our
experimental results in Section 5.2.

5.1 Experimental Setup

This section describes our experimental settings and video encoding configuration. We used the Big Buck
Bunny (BBB) [34] video encoded into fixed duration segments of 2 seconds. Table 3 illustrates the BBB
available representation stored in the streaming server. The client playout buffer duration was set to 30
seconds.

Representation SSIM PSNR [dB] Average bit rate [Kb/s] Resolution Average QP
50 0.719 24.4 51.05 320×240 50.82
100 0.800 28.3 98.91 320×240 44.13
200 0.890 32.4 193.31 480×320 35.60
250 0.914 34.0 240.96 480×320 33.23
500 0.960 38.0 480.15 854×480 27.01
750 0.971 40.0 721.56 854×480 23.61
1000 0.977 41.4 964.16 854×480 21.29
1500 0.985 43.3 1452.44 1200×720 18.06
2000 0.988 44.5 1942.40 1200×720 15.81
2400 0.989 45.3 2335.20 1200×720 14.40

Table 3 Big Buck Bunny representation information. SSIM and PSNR were computed between the original high quality
resolution and the lower quality representations after upsampling them to the same high resolution.

Fig. 5 illustrates our experimental setup. First, the user requests (using VLC [35]) the video MPD file
from the HTTP server via the Dummynet [33] which shapes the traffic. The Dummynet network scenario
does not use any information from the train dataset (Wednesday, Thursday, Friday and Saturday). The
Dummynet network scenario is based on the test dataset (Sunday, Monday and Tuesday).

After the client receives it, the adaptation logic algorithm requests the crowd estimate from the
PostgreSQL geo-predictive server (taken from the train set). Then, the user sends a request to the server
using a simple API implementation which only sends the following information to the server: the search
radius (250 meters), the user’s current location and the estimated end point (which depends on the
user’s average speed). The geo-predictive module predicts the average throughput. Since this API is very
lightweight, the process delay is negligible.

We do not assume we know the route. Therefore, we used a batch fetching mechanism. That is, before
the current segment download ends, we fetch the crowd estimate for the next segment. Each adaptation
logic can analyze the data or use the API differently but the fetching optimization is beyond the scope
of this study. As a result, the segment download is delayed according to the network conditions.

In order to compare our work to state-of-the-art algorithms we used the same segment fetching schema
as these works, where the client downloads each segment one after the other.
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Fig. 6 eMOS results for the different datasets. The new algorithm, GPAL, has the best performance for all datasets except
I110, T-Mobile, where it was slightly outperformed by MAL.
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Fig. 7 Comparison of GPAL and Riiser algorithms with and without prefetching mechanism. Prefetching did not improve
eMOS results in most cases and even lowered it in some cases.

5.2 Experimental Results

In Eq. 2 we stated our goal. In our experiments Bmax was 30 seconds. All the algorithms implemented
the constraints in Eq. 2.

Fig 6 depicts the eMOS score (Eq. 1) for all the algorithms. Our algorithm, GPAL, has the best
performance for all datasets except I110 over T-Mobile, where it was slightly outperformed by MAL.
MAL and Riiser also exhibited good performance. We can see several cases where the eMOS score is zero.
This is especially noticeable on I110 road over AT&T and Verizon operators where the cellular network
conditions were hard.

Our main goal was to improve the quality of experience while traveling without a known destination.
Additionally, we tested the performance of a prefetch mechanism. We added planning inspired by the
ideas of [22]. Based on the user’s speed, we estimated the user’s location on the road of the next segment
request. The adaptation logic algorithm decides the qualities both for the current segment and the next
segment and requests the average quality for the current location. We tested this method using both
our GPAL algorithm and the Riiser algorithm. The results are presented in Fig. 7. Prefetching did not
improve eMOS results in most cases and even lowered it in some cases.



Table 4 T-Mobile user results, over road I110

Algorithm Average bitrate
[Kbps]

eMOS Average
PSNR

Num of
Buffering

Num of
Switch
Up

Num of
Switch
Down

Sum: up +
down

µ σ φ

GPAL 236.55 0.73 33.26 4.00 32.00 32.00 64.00 3.64 0.89 0.30

Riiser 125.56 0.00 28.89 4.00 10.00 9.00 19.00 2.22 1.01 0.31

Maserati 238.05 0.26 32.66 4.00 42.00 47.00 89.00 3.45 1.23 0.31

N-Predict 95.41 0.00 27.04 4.00 6.00 6.00 12.00 1.73 1.01 0.31

1-Predict 624.22 0.00 36.70 20.00 49.00 31.00 80.00 5.04 2.25 0.54

PBA 576.11 0.28 37.58 20.00 38.00 24.00 62.00 5.26 1.52 0.54

MAL 407.71 0.88 35.47 3.00 9.00 2.00 11.00 4.35 1.55 0.27

MaxBw 604.04 0.00 36.71 12.00 69.00 67.00 136.00 5.07 2.10 0.47

Table 5 AT&T user results, over road I110

Algorithm Average bitrate
[Kbps]

eMOS Average
PSNR

Num of
Buffering

Num of
Switch
Up

Num of
Switch
Down

Sum: up +
down

µ σ φ

GPAL 243.98 0.73 33.35 4.00 25.00 22.00 47.00 3.70 0.95 0.31

Riiser 150.24 0.17 30.50 4.00 16.00 10.00 26.00 2.88 1.13 0.41

Maserati 172.32 0.00 29.28 12.00 33.00 37.00 70.00 2.44 1.6 0.47

N-Predict 150.91 0.00 28.86 4.00 3.00 5.00 8.00 2.33 1.52 0.31

1-Predict 385.92 0.00 32.48 28.00 45.00 25.00 70.00 3.62 2.4 0.59

PBA 424.91 0.00 34.42 28.00 34.00 23.00 57.00 4.15 2.04 0.60

MAL 308.73 0.00 33.24 16.00 20.00 15.00 35.00 3.70 1.68 0.51

MaxBw 404.14 0.00 32.53 8.00 60.00 53.00 113.00 3.65 2.49 0.41

Table 6 Verizon user results, over road I110

Algorithm Average bitrate
[Kbps]

eMOS Average
PSNR

Num of
Buffering

Num of
Switch
Up

Num of
Switch
Down

Sum: up +
down

µ σ φ

GPAL 216.77 1.90 32.47 0.00 51.00 47.00 98.00 3.37 1.04 0.00

Riiser 191.93 0.00 30.10 95.00 18.00 13.00 31.00 2.51 1.23 0.31

Maserati 285.49 0.00 31.81 12.00 47.00 60.00 107.00 3.27 1.93 0.47

N-Predict 140.40 0.62 28.57 0.00 7.00 11.00 18.00 2.19 1.38 0.00

1-Predict 336.25 0.00 32.91 32.00 40.00 31.00 71.00 3.63 1.97 0.61

PBA 388.29 0.00 32.61 152.00 40.00 24.00 64.00 3.62 2.36 0.84

MAL 238.07 0.00 30.94 14.00 27.00 13.00 40.00 2.93 1.73 0.50

MaxBw 231.58 0.00 30.93 12.00 52.00 50.00 102.00 2.97 1.75 0.47

Table 7 T-Mobile user results, over road I405

Algorithm Average bitrate
[Kbps]

eMOS Average
PSNR

Num of
Buffering

Num of
Switch
Up

Num of
Switch
Down

Sum: up +
down

µ σ φ

GPAL 1041.39 4.87 41.40 0.00 33.00 30.00 63.00 7.0 1.01 0.00

Riiser 807.20 3.83 39.70 0.00 16.00 10.00 26.00 6.21 1.43 0.00

Maserati 423.36 2.04 35.12 0.00 42.00 53.00 95.00 4.38 1.75 0.00

N-Predict 233.63 1.56 32.30 0.00 9.00 6.00 15.00 3.28 1.32 0.00

1-Predict 1171.55 1.12 39.98 8.00 49.00 34.00 83.00 6.80 2.63 0.41

PBA 1113.43 0.90 40.66 24.00 36.00 25.00 61.00 6.80 2.04 0.57

MAL 887.93 3.37 39.48 0.00 14.00 7.00 21.00 6.23 1.93 0.00

MaxBw 1115.30 1.76 40.08 4.00 66.00 61.00 127.00 6.70 2.40 0.31

Table 8 AT&T user results, over road I405

Algorithm Average bitrate
[Kbps]

eMOS Average
PSNR

Num of
Buffering

Num of
Switch
Up

Num of
Switch
Down

Sum: up +
down

µ σ φ

GPAL 950.13 4.59 40.94 0.00 26.00 22.00 48.00 6.72 1.06 0.00

Riiser 693.47 2.89 38.20 0.00 17.00 12.00 29.00 5.58 1.88 0.00

Maserati 416.03 2.07 35.17 0.00 45.00 52.00 97.00 4.36 1.69 0.00

N-Predict 190.91 1.12 30.76 0.00 6.00 6.00 12.00 2.96 1.50 0.00

1-Predict 1010.36 0.50 39.12 11.00 48.00 29.00 77.00 6.29 2.61 0.46

PBA 1231.16 0.02 40.31 44.00 40.00 25.00 65.00 6.88 2.11 0.71

MAL 790.96 3.44 39.14 0.00 13.00 7.00 20.00 6.03 1.68 0.00

MaxBw 1013.60 0.20 39.05 16.00 59.00 52.00 111.00 6.28 2.63 0.51

Table 9 Verizon user results, over road I405

Algorithm Average bitrate
[Kbps]

eMOS Average
PSNR

Num of
Buffering

Num of
Switch
Up

Num of
Switch
Down

Sum: up +
down

µ σ φ

GPAL 1240.38 5.24 42.23 0.00 36.00 29.00 65.00 7.47 1.02 0.00

Riiser 853.99 3.71 39.79 0.00 15.00 10.00 25.00 6.27 1.60 0.00

Maserati 521.64 2.28 36.25 0.00 59.00 68.00 127.00 4.81 1.85 0.00

N-Predict 324.58 1.64 33.60 0.00 13.00 10.00 23.00 3.79 1.67 0.00

1-Predict 1504.06 2.84 42.09 4.00 38.00 24.00 62.00 7.85 2.25 0.31

PBA 1498.48 3.09 43.08 16.00 34.00 26.00 60.00 8.04 1.10 0.51

MAL 1124.72 4.40 41.25 0.00 8.00 0.00 8.00 7.05 1.53 0.00

MaxBw 1490.58 4.54 42.26 0.00 60.00 52.00 112.00 7.87 2.10 0.00



Tables 4-9 present the detailed numerical results of our experiments. For each evaluation metric, the
best algorithm’s results (highest for average bitrate, eMOS, PSNR, µ and lowest for all the others) are
marked in bold. We can see that in many cases algorithms had very good results in one metric at the
cost of having very low results in another metric, thus achieving an overall low quality of experience. For
example, 1-Predict, PBA and MaxBw PSNR and average bitrate results were excellent. However, they
had a high number of rebuffering events and relatively high number of switches which reduced the eMOS
scores to low values, especially on the I110 road. Maserati and MaxBW had a high number of switches
and their other QoE parameters were not especially good and thus the overall eMOS scores were low.
Riiser and MAL algorithms had good performance, where the QoE parameters were relatively balanced.
Finally, GPAL had the least number of buffering events (except on I110 over T-Mobile where it was 2nd
best). Additionally, GPAL had balanced all other QoE parameters and thus its QoE was the best.

6 Conclusion

We proposed a new crowd-based algorithm called GPAL. We evaluated our algorithm and state-of-
the-art algorithms on large, real-life, crowdsourcing datasets. Our algorithm, GPAL, outperformed all
other state-of-the-art algorithms. Thus an optimal adaptation logic should estimate the distance between
the current conditions and the cloud conditions. Our future work will aim at designing an adaptation
algorithm that can leverage the advantages of past download algorithms with crowd knowledge based on
the conclusions drawn from this work. An interesting approach would be to implement machine learning
algorithms (similar to Claeys et al. [31]) combined with crowd data. Another possible direction would
be to harness a client-side pre-fetch and HTTP2 server-side push mechanism based on crowd knowledge
similar to [36–41].
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