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Abstract. We present a new histogram distance family, the Quadratic-Chi (QC).
QC members are Quadratic-Form distances with a cross-binχ2-like normaliza-
tion. The cross-binχ2-like normalization reduces the effect of large bins having
undo influence. Normalization was shown to be helpful in manycases, where the
χ2 histogram distance outperformed theL2 norm. However,χ2 is sensitive to
quantization effects, such as caused by light changes, shape deformations etc. The
Quadratic-Form part of QC members takes care of cross-bin relationships (e.g.
red and orange), alleviating the quantization problem. We present two new cross-
bin histogram distance properties:Similarity-Matrix-Quantization-Invariance
andSparseness-Invarianceand show that QC distances have these properties. We
also show that experimentally they boost performance. QC distances computation
time complexity is linear in the number of non-zero entries in the bin-similarity
matrix and histograms and it can easily be parallelized. We present results for im-
age retrieval using the Scale Invariant Feature Transform (SIFT) and color image
descriptors. In addition, we present results for shape classification using Shape
Context (SC) and Inner Distance Shape Context (IDSC). We show that the new
QC members outperform state of the art distances for these tasks, while having a
short running time. The experimental results show that boththe cross-bin prop-
erty and the normalization are important.

1 Introduction

It is common practice to use bin-to-bin distances such as theL1 andL2 norms for
comparing histograms. This practice assumes that the histogram domains are aligned.
However this assumption is violated in many cases due to quantization, shape deforma-
tion, light changes, etc. Bin-to-bin distances depend on the number of bins. If it is low,
the distance is robust, but not discriminative, if it is high, the distance is discrimina-
tive, but not robust. Distances that take into account cross-bin relationships (cross-bin
distances) can be both robust and discriminative.

There are two kinds of cross-bin distances. The first is the Quadratic-Form distance
[1]. Let P andQ be two histograms andA the bin-similarity matrix. The Quadratic-
Form distance is defined as:

QFA(P, Q) =
p

(P − Q)T A(P − Q) (1)
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Fig. 1. This figure should be viewed in color, preferably on a computer screen. A toy
example showing the behavior of distances that reduce the effect of large bins and
the behavior of distances that take cross-bin relationships into account. We show four
color histograms, each histogram has four colors: red, blue, purple, and yellow. The
Quadratic-Form (QF), the Earth Mover Distance (EMD) and theL1 norm do not re-
duce the effect of large bins. Thus, they rank (query ) to be more similar to (c ) than to
(a). χ2 considers (a) to be more similar, but as it does not take cross-bin relationships
into account it fails with (b). Our proposed members of the Quadratic-Chi histogram
distance family, QCN and QCS consider (a) to be most similar, (b) the second and (c )
the least similar as they take into account cross-bin relationships and reduce the effect
of large bins, using an appropriate normalization.

When the bin-similarity matrixA is the inverse of the covariance matrix, the
Quadratic-Form distance is called the Mahalanobis distance. If the bin-similarity ma-
trix is positive-definitive, then the Quadratic-Form distance is a metric. In this case the
Quadratic-Form distance is theL2 norm between linear transformations ofP andQ. If
the bin-similarity matrix is positive-semidefinite, then the Quadratic-Form distance is a
semi-metric.

The second type of distance that takes into account cross-bin relationships is the
Earth Mover’s Distance (EMD). EMD was defined by Rubner et al.[2] as the minimal
cost that must be paid to transform one histogram (P ) into the other (Q):

EMDD(P, Q) = ( min
{Fij}

X

i,j

FijDij)/(
X
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X

j

Fij ≤ Pi

X

i

Fij ≤ Qj

X

i,j

Fij = min(
X

i

Pi,
X

j

Qj)
(2)

where{Fij} denotes the flows. EachFij represents the amount transported from the
ith supply to thejth demand. We callDij theground distancebetween bini and bin
j. If Dij is a metric, the EMD as defined by Rubner is a metric only for normalized

histograms. Recently Pele and Werman [3] suggested̂EMD:

ÊMD
D

α (P, Q) = ( min
{Fij}
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Qj |α max
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s.t EMD constraints

(3)
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If Dij is a metric andα ≥ 1
2 , ÊMD is a metric for all histograms [3]. For normalized

histogramŝEMD and EMD are equal (e.g.Fig. 1).
In many natural histograms the difference between large bins is less important than

the difference between small bins and should be reduced. Seefor example Fig.1. The
Chi-Squared (χ2) is a histogram distance that takes this into account. It is defined as:

χ2(P, Q) =
1

2

X

i

(Pi − Qi)
2

(Pi + Qi)
(4)

The χ2 histogram distance comes from theχ2 test-statistic [4] where it is used
to test the fit between a distribution and observed frequencies. In this paper the his-
tograms are not necessarily normalized, and thus not probabilities vectors.χ2 was suc-
cessfully used for texture and object categories classification [5,6,7], near duplicate
image identification[8], local descriptors matching [9], shape classification [10,11] and
boundary detection [12]. Theχ2, like other bin-to-bin distances such as theL1 and the
L2 norms, is sensitive to quantization effects.

2 Our Contribution

In this paper we present a new cross-bin histogram distance family: Quadratic-Chi
(QC). Like the Quadratic-Form, its members take cross-bin relationships into account.
Like the χ2, its members reduce the effect of differences caused by binswith large
values. We discuss QC members’ properties, including a formalization of a two new
cross-bin histogram distance properties:Similarity-Matrix-Quantization-Invariance
andSparseness-Invariance. We show that all QC members and the EMD have these
properties. We also show importance experimentally.

For full histograms QC distances computation time is linearin the number of non-
zero entries in the bin-similarity matrix. In this case, QC distances can be implemented
with 5 lines of Matlab code (see Algorithm1). For two sparse histograms (for exam-
ple bag-of-words histograms) with a total ofS non-zeros entries and an average ofK

non-zeros entries in each row of the similarity matrix, a QC distance computation time
complexity isO(SK). See code (C++ and Matlab wrappers) at:
http://www.cs.huji.ac.il/ ˜ ofirpele/QC/ . Finally, QC distances’ paralleliza-
tion is trivial.

We present results for image retrieval on the Corel dataset using the SIFT descrip-
tor [13] and small color images. We also present results for shape classification using
Shape Context (SC) [10] and Inner Distance Shape Context (IDSC) [11]. QC mem-
bers performance is excellent. They outperform state of theart distances includingχ2,
QF, L1, L2, ÊMD[14], SIFTDIST[3], EMD-L1[15], Diffusion[16], Bhattacharyya [17],
Kullback-Leibler[18] and Jensen-Shannon[19] while having a short running time. We
have found that the normalization is very important. Surprisingly, excellent performance
was achieved using a new bin-to-bin distance from the QC family, that has a large nor-
malization factor. Its cross-bin version yielded an additional improvement, outperform-
ing all other distances for SIFT, SC and IDSC.

http://www.cs.huji.ac.il/~ofirpele/QC/
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3 The Quadratic-Chi Histogram Distance Family

3.1 The Quadratic-Chi Histogram Distance Definition

Let P andQ be two non-negative bounded histograms. That is,P, Q ∈ [0, U ]N . Let
A be a non-negative symmetric bounded bin-similarity matrixsuch that each diagonal
element is bigger or equal to every other element in its row (this demand is weaker than
being a strongly dominant matrix). That is,A ∈ [0, U ]N × [0, U ]N and∀i, j Aii ≥ Aij .
Let 0 ≤ m < 1 be the normalization factor. A Quadratic-Chi (QC) histogram distance
is defined as:

QCA
m(P, Q) =

√

√

√

√

∑

ij

(

(

Pi − Qi

)

(
∑

c(Pc + Qc)Aci

)m

)(

(

Pj − Qj

)

(
∑

c(Pc + Qc)Acj

)m

)

Aij (5)

where we define00 = 0. If A is positive-semidefinite, the argument inside the square
root (the sum) is non-negative. IfA is not positive-semidefinite we can get non-real
(complex) distances. This is true also for the Quadratic-Form (Eq.1). We prefer not to
restrict ourselves to positive-semidefinite matrices. On the other hand, we don’t want
non-real distances. So, we define a complex distance as zero.In practice, this was never
needed, even with non-positive-semidefinite matrices. This is due to the fact that the
eigenvectors of the similarity matrices corresponding to negative eigenvalues were very
far from smooth, while the difference vector for natural histogramsP andQ is usually
very smooth, see Fig.2.

Each addend’s denominator inside the square root is zero if and only if the addend’s
numerator is zero. A QCAm(P, Q) distance is continuous. In particular, if the addend’s
denominator tends to zero, the whole addend tends to zero. Proofs are in [20].

The Quadratic-Chi distance family generalizes both the Quadratic-Form (QF) and
a monotonic transformation ofχ2. That is, QCA0 (P, Q) =QFA(P, Q) and if I is the
identity matrix, QCI0.5(P, Q) =

√

2χ2(P, Q).

3.2 Metric Properties

There are three conditions for a distance function,D, to be a semi-metric. The first is
non-negativity(i.e.D(P, Q) ≥ 0), the second issymmetry(i.e.D(P, Q) = D(Q, P ))

Algorithm 1 Quadratic-Chi Matlab Code for Full Histograms
function dist= QC(P,Q,A,m)

Z= (P+Q) * A;
% 1 can be any number as Z_i==0 iff D_i=0
Z(Z==0)= 1;
Z= Z.ˆm;
D= (P-Q)./Z;
% max is redundant if A is positive-semidefinite
dist= sqrt( max(D * A* D’,0) );
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(P ) (Q) (Z) (E)

Fig. 2. This figure illustrates why it is not likely to get negative values in the square
root argument of a QC distance for natural histograms and a typical similarity ma-
trix. P andQ are two SIFT histograms.Z is the normalized difference vector. That is:
Zi = Pi

(
P

c(Pc+Qc)Aci)m − Qi

(
P

c(Pc+Qc)Aci)m . Negative values are represented with red,
positive values are represented with black.E is one of the eigenvectors of the similarity
matrix that we used in the experiments which correspond to a negative eigenvalue.Z is
very smooth whileE is very non-smooth. This is typical of eigenvectors with negative
values with typical parameters.

and the third issubadditivity(i.e.D(P, Q) ≤ D(P, K)+D(K, Q)). D is a metric if it is
a semi-metric and it also has the property ofidentity of indiscernibles(i.e.D(P, Q) = 0
if and only if P = Q).

A QCA
m distance without the square root, is non-negative if the bin-similarity matrix,

A, is positive-semidefinite. IfA is positive-definitive, then it also has the property of
identity of indiscernibles. This follows directly from the fact that the argument inside
the square root in a QC histogram distance is a quadratic-form between two vectors. A
QC histogram distance is symmetric if the bin-similarity matrix, A, is symmetric.

We now discuss subadditivity (i.e. D(P, Q) ≤ D(P, K) + D(K, Q)) for several
distances. Theχ2 histogram distance is not subadditive. For example leti = 0, k = 1,
j = 2 we getχ2(i, j) = 1 > χ2(i, k) + χ2(k, j) = 2

3 . However,
√

χ2 is subadditive
for one and two dimensional non-negative histograms (verified by analysis). Experi-
mentally it appears that

√

χ2 is subadditive for anN -dimensional non-negative his-
tograms. Experimentally, QC members with the identity matrix seems to be subadditive
for non-negative histograms. However, QC members with somepositive-definitive bin-
similarity matrices are not subadditive. The question whentheQC histogram distances
are subadditive is currently unresolved. An additional discussion about triangle inequal-
ity can be found in Jacobs et al. [21].

4 Cross-Bin Histogram Distance Properties

4.1 The Similarity-Matrix-Quantization-Invariance Prop erty

TheSimilarity-Matrix-Quantization-Invarianceproperty ensures that if two bins in the
histograms have been erroneously quantized, this will not affect the distance. Mathe-
matically we define this as:

Definition 1. LetD be a cross-bin histogram distance between two histogramsP and
Q and letA be the bin-similarity/distance matrix. We assumeP , Q and A are non-
negative and thatA is symmetric. LetAk,: be thekth row ofA. LetV = [V1, . . . , VN ]
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be a non-negative vector and0 ≤ α ≤ 1. We defineV α,k,b = [. . . , αVk, . . . , Vb + (1−
α)Vk, . . .]. That is,V α,k,b is a transformation ofV where(1 − α)Vk mass has moved
from bink to bin b. We defineD to beSimilarity-Matrix-Quantization-Invariantif:

Ak,: = Ab,: ⇒ ∀ 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 DA(P, Q) = DA(P α,k,b, Qβ,k,b) (6)

We prove that EMD,̂EMD and all the Quadratic-Chi histogram distances are
Similarity-Matrix-Quantization-Invariantin the appendix [20].

4.2 The Sparseness-Invariance Property

TheSparseness-Invarianceproperty ensures that distances between sparse histograms
will be equal to distances between full histograms. Mathematically we define this as:

Definition 2. Let D be a cross-bin histogram distance between two histogramsP ∈
RN andQ ∈ RN and letA be theN × N bin similarity/distance matrix. LetA′ be
any(N + 1) × (N + 1) matrix whose upper-left sub-matrix equalsA. We defineD to
beSparseness-Invariantif:

DA([P1, . . . , Pn], [Q1, . . . , Qn]) = DA′

([P1, . . . , Pn,0], [Q1, . . . , Qn,0]) (7)

QC members, EMD and thêEMD areSparseness-Invariantdirectly from their def-
initions. A stronger property calledExtension-Invariancewas proposed by D’Agostino
and Dardanoni for bin-to-bin distances [22]. This property requires that, if both his-
tograms are extended by concatenating each of them with the same vector (not nec-
essarily zeros), the distance is left unaltered. Cross-bindistances assumes dependence
between histogram bins, thus this requirement is too strongfor them.

4.3 Cross-Bin Histogram Distance Properties Discussion

A Sparseness-Invariantcross-bin histogram distance does not depend on the specific
representation of the histograms (full or sparse). ASimilarity-Matrix-Quantization-
Invariant cross-bin histogram distance encompass its cross-bin relationships only in
the bin-similarity matrix. Intuitively such properties are desirable. In the appendix [20],
we compare experimentally distances which resembles QC distances, but are either not
Similarity-Matrix-Quantization-Invariantor notSparseness-Invariant. The comparison
shows that these properties considerably boost performance (especially for sparse color
histograms).

Rubner et al. [2,23] claim that one of the key advantages of the Earth Mover’s
Distance is that each compared object may be represented by an individual (possibly
with a different number of bins) binning that is adapted to its specific distribution. The
Quadratic-Form is regarded as not having this property (seefor example, Table 1 in
[23]). Since all the Quadratic-Chi histogram distances (including the Quadratic-Form)
are bothSimilarity-Matrix-Quantization-InvariantandSparseness-Invariantthere is no
obstacle to using them with individual binning;i.e. to use them to compare histograms
that were adapted to each object individually.

Similarity-Matrix-Quantization-InvariantandSparness-Invariantcan contradict.
For example, any distance applied to the transformed vectors P ′

i =
∑

c(Pc)Aci and
Q′

i =
∑

c(Qc)Aci is Similarity-Matrix-Quantization-Invariant. However theχ2 dis-
tance betweenP ′ andQ′ is notSparseness-Invariant(with respect toP andQ).
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5 Implementation Notes

5.1 The Similarity Matrix and The Normalization Factor

It is desirable to have a transformation from a distance matrix into a similarity matrix,
as many spaces are equipped with a useful distance (e.g.color space [24]). Hafner et al.
[1] proposed this transformation:

Aij = 1 −
Dij

maxij(Dij)
(8)

Another possibility for choosing a similarity matrix is by using cross validation.
However, we think that like for the Quadratic-Form, learning the similarity matrix (and
for QC also the normalization factor) will be the best way to adjust them. This is left
for future work. Currently we suggest to use thresholded ground distances as was used
in [2,25,3,14] and choosing the normalization factor by cross validation.

5.2 Efficient Online Bin-Similarity Matrix Computation

For a fixed histogram configuration (e.g.SIFT, SC and IDSC) the bin-similarity matrix
can be pre-computed once. Then, each distance computation is linear in the number of
non-zero entries in the bin-similarity matrix.

There are cases where the bin-similarity matrix can not be pre-computed. For ex-
ample, in our color experiments (Section6.1), we usedN × M color images as sparse
histograms. That is, the query histogram was:[1, . . . , 1, 0, . . . , 0] and each image being
compared to the query was represented by the histogram:[0, . . . , 0, 1, . . . , 1]. Note that
the full histogram dimension isM ×N × 2563, computing an(M ×N × 2563)2 sim-
ilarity matrix offline is not feasible. We can compute the similarity online for each pair
of sparse histograms inO((NM)2) time. We now discuss how to do it more efficiently.

If we are comparing two images (as in Section6.1) we can use a similarity matrix
that gives far-away pixels zero similarity (see Eq.10). Then, we can simply compare
each pixel in one image to its correspondingT × T spatial neighbors in the second
image. This reduces running time toO(NMT 2). Using this technique, it is important
to use a sparse representation for the bin-similarity matrix.

6 Results

We present results using the newly defined distances and state of the art distances, for
image retrieval using SIFT-like descriptors and color image descriptors. In addition,
we present results for shape classification using Inner Distance Shape Context (IDSC).
More results for shape classification using SC, can be found in the appendix [20].

6.1 Image Retrieval Results

In this section we present results for image retrieval usingthe same benchmark as Pele
and Werman [14]. We employed a database that contained 773 landscape images from
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the COREL database that were also used in Wang et al. [26]. The dataset has 10 classes1:
People in Africa, Beaches, Outdoor Buildings, Buses, Dinosaurs, Elephants, Flowers,
Horses, Mountains and Food. The number of images in each class ranges from 50 to
100. From each class we selected 5 images as query images (images1, 10, . . . , 40).
Then we searched for the 50 nearest neighbors for each query image. We computed the
distance of each image to the query image and its reflection and took the minimum. We
present results for two types of image representations: SIFT-like descriptors and small
L*a*b* images.

SIFT-like Descriptors The first representation - SIFT is a6 × 8 × 8 SIFT descriptor
[13] computed globally on the whole image. The second representation - CSIFT is a
SIFT-like descriptor on a color-edge image. See [14] for more details.

We experimented with two new types of QC distances. The first is QCA
0.5, which is

a cross-bin generalization of
√

2χ2, which we call Quadratic-Chi-Squared (QCS). The
second is QCA0.9, which has a larger normalization factor, which we call Quadratic-Chi-
Normalized (QCN). We do not use QCA

m with m ≥ 1 due to discontinuity problems,
see appendix [20] (practically, QCA

1 had slightly poorer results compared to QCA
0.9).

We also experimented with the Quadratic-Form (QF) distancewhich is QCA
0 . For all

of these distances we used the bin-similarity matrix in Eq.8. Let M = 8 be the num-
ber of orientation bins, as in Pele and Werman [14], the ground distance between bins
(xi, yi, oi) and(xj , yj, oj) is:

dT (i, j) = min
“

`

||(xi, yi) − (xj , yj)||2 + min(|oi − oj |, M − |oi − oj |)
´

, T
”

(9)

We also used the identity matrix as a similarity matrix for all the above distances. We
also compared toL2 andχ2. QFI = L2, and nearest neighbors ofχ2 and QCSI are the
same.

We also compared to four EMD variants. The first waŝEMD
D

1 with D = dT (Eq.

9) as in Pele and Werman [3]. The second was theL1 norm which is equal tôEMD
D

0.5

with D equals to the Kronecker delta multiplied by two. The third isSIFTDIST[3] which is
the sum ofÊMD over all the spatial cells (each spatial cell contains one orientation his-
togram). The ground distance for the orientation histograms is:min(|oi−oj |, M−|oi−
oj |, 2) (M is the number of orientation bins). The fourth was the EMD-L1[15] which is
EMD with L1 as the ground distance. We also tried non-thresholded ground distances
(which produce non-sparse similarity matrices). However,the results were poor. This
is in line with Pele and Werman’s findings that cross-bin distances should be used with
thresholded ground distances [14]. Finally, we compared to the Diffusion distance pro-
posed by Ling and Okada [16] and to three probabilistic based distances: Bhattacharyya
[17], Kullback-Leibler (KL) [18] and Jensen-Shannon (JS) [19] (we added Matlab’s ep-
silon to all histogram bins when computing KL and JS throughout the paper, as they are
not well defined if there is a zero bin, without doing so accuracy was very low).

1 The original database contains some visually ambiguous classes such as Africa that also con-
tains images of beaches in Africa. We used the filtered image dataset that was downloaded
from: http://www.cs.huji.ac.il/ ˜ ofirpele/FastEMD/

http://www.cs.huji.ac.il/~ofirpele/FastEMD/
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For each distance measure, we present the descriptor (SIFT/CSIFT) with which
it performed best. The results for all the pairs of descriptors and distance measures
can be found in the appendix[20]. The results are presented in Fig.3(a) and show that

QCN1−
dT=2

2 (QCN with the similarity matrix:Aij = 1 − dT=2(i,j)
2 ) outperformed all

other methods.̂EMDdT=2

1 ranked second. The computation of QCN1−
dT=2

2 was 266

times faster than̂EMDdT=2

1 , see Table2 in page12. QCNI ranked third, which shows
the importance of the normalization factor.

All cross-bin distances that use thresholded ground distances outperformed their
bin-by-bin versions. The figure also shows thatχ2 and QF improve uponL2. QCN and
QCS which are mathematically sound combinations ofχ2 and QF outperformed both.

L*a*b* Images Our second type of image representation is a small L*a*b* image. We
resized each image to32× 48 and converted them to L*a*b* space. The state of the art
color distance is∆00 - CIEDE2000 on L*a*b* color space[24,27]. As it is meaningful
only for small distances we threshold it (as in [2,25,14]).

Again, we experimented with QCS, QCN and QF distances using the bin-similarity
matrix in Eq.8. The ground distance between two pixels(xi, yi, Li, ai, bi),
(xj , yj, Lj , aj, bj):

s(i, j) = ||(xi, yi) − (xj , yj)||2

dcT1,T2
(i, j) =

(

min ((s(i, j) + ∆00((Li, ai, bi), (Lj , aj , bj))), T1) if s(i, j) ≤ T2

T1 otherwise

(10)

This distance is similar to the one used by [14], except that distances with spatial
difference larger than the thresholdT2 are set to the maximum thresholdT1. This was
done to accelerate the online computation of the bin-similarity matrix. The accuracy
using this distance is the same as using the distance from Pele and Werman [14]. See
appendix [20]. We also used̂EMD with dcT1,T2

(Eq.10) as a ground distance. LetI1, I2

be the two L*a*b* images. We also used the following distances:

L1∆00 =
X

x,y

(∆00(I1(x, y), I2(x, y))) L1∆
T
00 =

X

x,y

(min(∆00(I1(x, y), I2(x, y)), T ))

L2∆00 =
X

x,y

(∆00(I1(x, y), I2(x, y)))2 L2∆
T
00 =

X

x,y

(min(∆00(I1(x, y), I2(x, y)), T ))2

QCNI , χ2, L2, L1, SIFTDIST[3], EMD-L1[15], the Diffusion[16], Bhattacharyya [17],
KL [ 18] and JS [19] distances cannot be applied to L*a*b* images as they are either
bin-to-bin distances or applicable only to Manhattan networks.

We present results in Fig.3. As shown, QCS1−
dcT1=20,T2=5

20 andÊMD
dcT1=20,T2=5

1

[14] distances ranked first. QCS1−
dcT1=20,T2=5

20 ran 300 times faster (see Table2). How-
ever, since the computation of the bin-similarity matrix cannot be offline here, the real

gain is a factor of 17. The QF1−
dcT1=20,T2=5

20 distance ranked last, which shows the im-
portance of the normalization factor of the QC histogram members.

Although a QC distance alleviates quantization problems, EMD does it better, in-
stead of matching everything to everything it finds the optimal matching. EMD however,
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Fig. 3.Results for image retrieval.
(a) SIFT-like descriptors. For each distance measure, we present the descriptor
(SIFT/CSIFT) with which it performed best. The results for all the pairs of descriptors
and distance measures can be found in the appendix[20]. There are several key obser-

vations. First, the QC members performance is excellent. QCN1−
dT=2

2 (QCN with the
similarity matrix: Aij = 1 − dT=2(i,j)

2 ) outperformed all other distances.̂EMDdT=2

1

ranked second, but its computation was 266 times slower thanQCN1−
dT=2

2 computa-
tion (see Table2). Second, all cross-bin versions of the distances (withdT or a transfor-
mation of it) performed better than their bin-by-bin versions (with the identity matrix
or the Kronecker delta function). Third, QCNI ranked third, although its a bin-to-bin
distance. This shows the importance of the normalization factor. Finally,χ2 and QF
improve uponL2. However,χ2 does not take cross-bin relationships into account and
QF does not reduce the effect of large bins. QCS and QCN histogram distances, which
are mathematically sound combinations ofχ2 and QF have the two properties and out-
performed both.
(b) L*a*b* images results. QCNI , χ2, L2, L1, SIFTDIST[3], EMD-L1[15],
Diffusion[16], Bhattacharyya[17], KL[ 18] and JS[19] distances are not applicable here.

QCS1−
dcT1=20,T2=5

20 andÊMD
dcT1=20,T2=5

1 [14] ranked first. QCS1−
dcT1=20,T2=5

20 compu-

tation is 300 times faster than̂EMD
dcT1=20,T2=5

1 without taking the bin-similarity matrix
computation into account and 17 times faster when it is takeninto account (see Table2).

QF1−
dcT1=20,T2=5

20 ranked last, which shows the importance of the normalization factor
in QC members.
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does not reduce the effect of large bins. We conjecture that avariant of EMD which will
reduce the effect of large bins will have an excellent performance.

6.2 Shape Classification Results

In this section we present results for shape classification using the same framework as
Ling et al. [11,15,28]. We test for shape classification with the Inner Distance Shape
Context (IDSC) [11]. The original Shape Context (SC) descriptor was proposed by
Belongie et al. [10]. Belongie et al. [10] and Ling and Jacobs [11] used theχ2 distance
for comparing shape context histograms. Ling and Okada [15] showed that replacing
χ2 with EMD-L1 improves results. We show that QC members yields the best results.

We tested on the articulated shape data set [11,28], that contains 40 images from 8
different objects. Each object has 5 images articulated to different degrees. The dataset
is very challenging because of the similarity between different objects. The original SC
had a very poor performance on this dataset, see appendix [20].

Again, we experimented with QCS, QCN and QF distances with the bin-similarity
matrix in Eq.8. The ground distance between two bins(ri, oi), (ri, oi) was (M is the
number of orientation bins):

dscT (i, j) = min ((|di − dj | + min(|oi − oj |, M − |oi − oj |), T ) (11)

We also used the identity matrix as a similarity matrix, and thus we also compare toL2.
χ2 and QCSI distances are not equivalent here as the distance is not usedfor nearest
neighbors. We refer the reader to Belongie et al. paper to seeits usage [10]. Practically,
QCSI slightly outperformedχ2 in this task, see Table1.

We also compared to four EMD variants:̂EMD
D

1 with D = dscT (Eq. 11), the
L1 norm, SIFTDIST[3] and EMD-L1[15]. Finally, we compared to the Diffusion distance
proposed by Ling and Okada [16] and to three probabilistic based distances: Bhat-
tacharyya [17], Kullback-Leibler (KL) [18] and Jensen-Shannon (JS) [19].

To evaluate results, for each image, the four most similar matches are chosen from
other images in the dataset. The retrieval result is summarized as the number of 1st,
2nd, 3rd and 4th most similar matches that come from the correct object. Table1 shows

the retrieval results. The QCN1−
dscT=2

2 outperformed all the other methods. QCNI per-
formance is again excellent, which shows the importance of the normalization factor.

Top 1 Top 2 Top 3 Top 4 AUC%

QCN1−
dscT=2

2 39 38 38 34 0.950
QCNI 40 37 36 33 0.940

QCS1−
dscT=2

2 39 35 38 28 0.912
QCSI 40 34 37 27 0.907
χ2 40 36 36 21 0.902

QF
1−

dscT=2

2 40 34 39 19 0.897
L2 39 35 35 18 0.873

Top 1 Top 2 Top 3 Top 4 AUC%

ÊMD
dscT=2

1
39 36 35 27 0.902

L1 39 35 35 25 0.890
SIFTDIST[3] 38 37 27 22 0.848
EMD-L1[15] 39 35 38 30 0.917
Diffusion[16] 39 35 34 23 0.880
Bhattacharyya[17] 40 37 32 23 0.895
KL[ 18] 40 38 36 29 0.938
JS[19] 40 35 37 21 0.900

Table 1.Shape classification results. QCN1−
dscT=2

2 outperformed all other distances.
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Again all cross-bin distances outperformed their bin-by-bin versions. Again,χ2 and
QF improved uponL2. QCN and QCS which are mathematically sound combinations
of χ2 and QF outperformed both.

6.3 Running Time Results

All runs were conducted on a Pentium 2.8GHz. A comparison of the practical running
time of all distances is given in Table2. Clearly QCN and QCS distances are fast to
compute. This is consistent with their linear time complexity. The only non-linear time
distances arêEMD [14] and EMD-L1[15] which are also practically much slower than
the other methods. Our method can be easily parallelized, taking advantage of multi-
core computers or the GPU.

Descriptor QCNA2 QCNI QCSA2 QCSI χ2 QFA2 L2 ÊMDD2 [14] L1 SIFTDIST[3]

(SIFT) 0.15 0.1 0.07 0.014 0.013 0.05 0.011 40 0.011 0.07
(IDSC) 6.41 2.99 2.32 0.35 0.34 1.25 0.14 133.75 0.32 0.31

Descriptor EMD-L1[15] Diffusion[16] JS[19] KL[ 18] Bhattacharyya[17]

(SIFT) 40 0.27 0.088 0.048 0.015
(IDSC) 20.57 3.15 1.40 8.53 17.17

Descriptor QCNA20 QCSA20 QFA20 ÊMDD20 [14] L1∆T =20

00
L1∆00 L2∆T =20

00
L2∆00

(L*a*b*) 20 (370) 19 (369) 11 (361) 6000(6350)3.2 3.2 3.2 3.2

Table 2.(SIFT) 384-dimensional SIFT-like descriptors matching time (inmilliseconds).
The distances from left to right are the same as the distancesin Fig. 3 (a) from up to
down.
(IDSC) 60-dimensional IDSC histograms matching time (inmicroseconds). The dis-
tances from left to right are the same as the distances in Table1 from up to down.
(L*a*b*) 32 × 48 L*a*b* images matching time (inmilliseconds). The distances from
left to right are the same as the distances in Fig.3 (b) from up to down. In parentheses
is the time it takes to compute the distance and the bin-similarity matrix as it cannot be
computed offline.

7 Conclusions

We presented a new cross-bin distance family - the Quadratic-Chi (QC). QC distances
have many desirable properties. Like the Quadratic-Form histogram distance they take
into account cross-bin relationships. Likeχ2 they reduce the effect of large bins. We for-
malized two new cross-bin properties,Similarity-Matrix-Quantization-Invarianceand
Sparseness -Invariance. QC members were shown to have both. Finally, QC distance
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computation time is linear in the number of non-zero entriesin the bin-similarity ma-
trix. Experimentally, QC outperformed state of the art distances, while having a very
short run-time.

There are several open questions that we still need to explore. The first is for which
QC distances does the the triangle inequality holds for. Thesecond is whether we can
change the Earth Mover’s Distance so that it will also reducethe effect of large bins.
Concave-cost network flow [29] seems to be the right direction for future work although
it presents two major obstacles. First, the concave-cost network flow optimization is NP-
hard [29]. However, there are available approximations [29,30]. Second, simply using
concave-cost flow networks will result in a distance which isnot Similarity-Matrix-
Quantization-Invariant. We would also like to explore whether metric learning methods
such as [31,32,33,34,35,36,37,38] can be generalized for the Quadratic-Chi histogram
distance. Assent et al. [39] have suggested methods that accelerate database retrieval
that uses Quadratic-Form distances. Generalizing these methods for the Quadratic-Chi
distances is of interest. Finally, other computer vision applications such as tracking
can use the QC distances. The project homepage, including code (C++ and Matlab
wrappers) is at:http://www.cs.huji.ac.il/ ˜ ofirpele/QC/ .
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