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Abstract. We present a new histogram distance family, the Quadrati¢@cC).
QC members are Quadratic-Form distances with a cross-biike normaliza-
tion. The cross-bin¢?-like normalization reduces the effect of large bins having
undo influence. Normalization was shown to be helpful in meases, where the
x? histogram distance outperformed the norm. However,x? is sensitive to
guantization effects, such as caused by light changesesledprmations etc. The
Quadratic-Form part of QC members takes care of cross-tatiaeships €.g.
red and orange), alleviating the quantization problem. Yésgnt two new cross-
bin histogram distance propertiesSimilarity-Matrix-Quantization-Invariance
andSparseness-Invarian@nd show that QC distances have these properties. We
also show that experimentally they boost performance. @tadces computation
time complexity is linear in the number of non-zero entrieshie bin-similarity
matrix and histograms and it can easily be parallelized. Wegnt results for im-
age retrieval using the Scale Invariant Feature Transf&ifAT) and color image
descriptors. In addition, we present results for shapesifieation using Shape
Context (SC) and Inner Distance Shape Context (IDSC). Wes shat the new
QC members outperform state of the art distances for theks,tahile having a
short running time. The experimental results show that be¢hcross-bin prop-
erty and the normalization are important.

1 Introduction

It is common practice to use bin-to-bin distances such as.thand L, norms for
comparing histograms. This practice assumes that theghéstodomains are aligned.
However this assumption is violated in many cases due tottpadion, shape deforma-
tion, light changes, etc. Bin-to-bin distances depend emtmber of bins. If it is low,
the distance is robust, but not discriminative, if it is higihe distance is discrimina-
tive, but not robust. Distances that take into account ebaisselationships (cross-bin
distances) can be both robust and discriminative.

There are two kinds of cross-bin distances. The first is thed@atic-Form distance
[1]. Let P and@ be two histograms and the bin-similarity matrix. The Quadratic-
Form distance is defined as:

QF'(P,Q) = /(P - Q)TA(P - Q) 1)
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Fig. 1. This figure should be viewed in color, preferably on a compsteeen. A toy
example showing the behavior of distances that reduce fieetedf large bins and
the behavior of distances that take cross-bin relatiossinifo account. We show four
color histograms, each histogram has four colors: red,, ldueple, and yellow. The
Quadratic-Form (QF), the Earth Mover Distance (EMD) and thenorm do not re-
duce the effect of large bins. Thus, they ragkiéry ) to be more similar tod) than to
(a). x2 considers4) to be more similar, but as it does not take cross-bin reiatigps
into account it fails with If). Our proposed members of the Quadratic-Chi histogram
distance family, QCN and QCS considal) o be most similar,lf) the second and{
the least similar as they take into account cross-bin mahips and reduce the effect
of large bins, using an appropriate normalization.

When the bin-similarity matrixA is the inverse of the covariance matrix, the
Quadratic-Form distance is called the Mahalanobis digtalfiche bin-similarity ma-
trix is positive-definitive, then the Quadratic-Form dista is a metric. In this case the
Quadratic-Form distance is te norm between linear transformations®fandq@. If
the bin-similarity matrix is positive-semidefinite, théretQuadratic-Form distance is a
semi-metric.

The second type of distance that takes into account croseehitionships is the
Earth Mover’s Distance (EMD). EMD was defined by Rubner ef-dlas the minimal
cost that must be paid to transform one histogratigto the other Q):

EMDD(P,Q):({rgi;q}ZFijDij)/(ZFij) st Fy; >0
RAEN i3

’ 2
ZFij <P ZFM <Qj ZF’U = min(z PhZQj) @

where{F;;} denotes the flows. Each; represents the amount transported from the
ith supply to thejth demand. We calD;; the ground distancéetween biri and bin
j. If D;; is a metric, the EMD as defined by Rubner is a metric only fomradized

histograms. Recently Pele and Wermahs[uggestecE/WD:

_—— D
EMD.. (P, Q) = (min > FigDiy) + 130 Pi= 3 Qjlamax Dy
EERE i ki " (3)

s.t EMD constraints
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If D;; is a metric andv > % EMD is a metric for all histograms3]. For normalized

histogramﬁ/l\D and EMD are equak(g.Fig. 1).

In many natural histograms the difference between largeibitess important than
the difference between small bins and should be reducedoBegample Figl. The
Chi-Squaredy?) is a histogram distance that takes this into account. lefsdd as:

2 1 (Pi—Qi)?
X(PvQ)*izm (4)

The x? histogram distance comes from tlyé test-statistic 4] where it is used
to test the fit between a distribution and observed freqe@sndn this paper the his-
tograms are not necessarily normalized, and thus not pildtesbvectors.y? was suc-
cessfully used for texture and object categories clasgditd5,6,7], near duplicate
image identificatiortf], local descriptors matching@], shape classification.),11] and
boundary detectionl]]. The 2, like other bin-to-bin distances such as theand the
Lo norms, is sensitive to quantization effects.

2 Our Contribution

In this paper we present a new cross-bin histogram distaanodyf Quadratic-Chi
(QQC). Like the Quadratic-Form, its members take cross-dlationships into account.
Like the x2, its members reduce the effect of differences caused bywiittislarge
values. We discuss QC members’ properties, including adbzation of a two new
cross-bin histogram distance properti€&imilarity-Matrix-Quantization-Invariance
and Sparseness-Invariancié/e show that all QC members and the EMD have these
properties. We also show importance experimentally.

For full histograms QC distances computation time is lineahe number of non-
zero entries in the bin-similarity matrix. In this case, Qi€tances can be implemented
with 5 lines of Matlab code (see Algorithi). For two sparse histograms (for exam-
ple bag-of-words histograms) with a total §fnon-zeros entries and an averagdof
non-zeros entries in each row of the similarity matrix, a Q€ahce computation time
complexity isO(SK). See code (C++ and Matlab wrappers) at:
http://www.cs.huji.ac.il/ ~ofirpele/QC/ . Finally, QC distances’ paralleliza-
tion is trivial.

We present results for image retrieval on the Corel dataseguhe SIFT descrip-
tor [13] and small color images. We also present results for shassification using
Shape Context (SC)L{J] and Inner Distance Shape Context (IDSC)]} QC mem-
bers performance is excellent. They outperform state oéthdistances including?,
QF, L1, Lo, EMD[14], SIFTye[3], EMD-L,[15], Diffusion[16], Bhattacharyya 7,
Kullback-Leibler[Ld and Jensen-Shanndr] while having a short running time. We
have found that the normalization is very important. Swipgly, excellent performance
was achieved using a new bin-to-bin distance from the QClyathat has a large nor-
malization factor. Its cross-bin version yielded an addiéil improvement, outperform-
ing all other distances for SIFT, SC and IDSC.
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3 The Quadratic-Chi Histogram Distance Family

3.1 The Quadratic-Chi Histogram Distance Definition

Let P and@ be two non-negative bounded histograms. Thafis) < [0, U]". Let
A be a non-negative symmetric bounded bin-similarity mattigh that each diagonal
element is bigger or equal to every other element in its rbvg lemand is weaker than
being a strongly dominant matrix). Thatié,e [0, U] x [0, U]Y andVi, j A; > A;j.
Let0 < m < 1 be the normalization factor. A Quadratic-Chi (QC) histagrdistance
is defined as:

" B (P — Q) (P —Qj) ) -
QG R Q) = J 2 ((ZC(PC T Q0>Aa-)’”> ((ZAPC o) )i ©

©j

where we defin% = 0. If A is positive-semidefinite, the argument inside the square
root (the sum) is non-negative. K is not positive-semidefinite we can get non-real
(complex) distances. This is true also for the QuadraticyHiq.1). We prefer not to
restrict ourselves to positive-semidefinite matrices. ndther hand, we don’t want
non-real distances. So, we define a complex distance asagn@actice, this was never
needed, even with non-positive-semidefinite matricess Tdue to the fact that the
eigenvectors of the similarity matrices correspondingdgative eigenvalues were very
far from smooth, while the difference vector for naturakbggamsP andq@ is usually
very smooth, see Fig@.

Each addend’s denominator inside the square root is zenalibaly if the addend’s
numerator is zero. A QE(P, Q) distance is continuous. In particular, if the addend’s
denominator tends to zero, the whole addend tends to zevofsPare in P().

The Quadratic-Chi distance family generalizes both thedgatac-Form (QF) and
a monotonic transformation of2. That is, QC‘Q‘(P,Q) =QF4(P,Q) and if I is the

identity matrix, QG 5(P, Q) = /2x2(P, Q).

3.2 Metric Properties

There are three conditions for a distance functibnfo be a semi-metric. The first is
non-negativity(i.e. D(P, Q) > 0), the second isymmetryi.e. D(P, Q) = D(Q, P))

Algorithm 1 Quadratic-Chi Matlab Code for Full Histograms
function dist= QC(P,Q,A,m)

Z= (P+Q) *A;

% 1 can be any number as Z_i==0 iff D_i=0
Z(Z==0)= 1,

Z= Z.m;

D= (P-Q)./Z;

% max is redundant if A is positive-semidefinite
dist= sqrt( max(D *AxD",0) );
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Fig. 2. This figure illustrates why it is not likely to get negativelwes in the square
root argument of a QC distance for natural histograms andh@dl similarity ma-
trix. P and@ are two SIFT histograms is the normalized difference vector. That is:
7, = (ZC(PC+PéC)Aci)m _ (ZC(PCSéC)Am:)M' Negative values are represented with red,
positive values are represented with blaEkis one of the eigenvectors of the similarity
matrix that we used in the experiments which correspond &pative eigenvalue” is
very smooth whileF is very non-smooth. This is typical of eigenvectors with aibge
values with typical parameters.

and the third isubadditivity(i.e. D(P, Q) < D(P, K)+D(K, Q)). Dis ametricifitis
a semi-metric and it also has the propertyd&tity of indiscernibleé.e. D(P, Q) = 0
if and only if P = Q).

A QC4 distance without the square root, is non-negative if thedimnilarity matrix,
A, is positive-semidefinite. IfA is positive-definitive, then it also has the property of
identity of indiscerniblesThis follows directly from the fact that the argument iresid
the square root in a QC histogram distance is a quadratiof@tween two vectors. A
QC histogram distance is symmetric if the bin-similaritytma A, is symmetric.

We now discuss subadditivity.¢. D(P, Q) < D(P, K) + D(K, Q)) for several
distances. Theg? histogram distance is not subadditive. For example tet0, k£ = 1,
j = 2wegety?(i,j) = 1 > x2(i, k) + x%(k, j) = 2. However,/X? is subadditive
for one and two dimensional non-negative histograms (‘eetifiy analysis). Experi-
mentally it appears thW is subadditive for anV-dimensional non-negative his-
tograms. Experimentally, QC members with the identity iRaeems to be subadditive
for non-negative histograms. However, QC members with sooséive-definitive bin-
similarity matrices are not subadditive. The question winvexd)C' histogram distances
are subadditive is currently unresolved. An additionatdssion about triangle inequal-
ity can be found in Jacobs et a21].

4 Cross-Bin Histogram Distance Properties

4.1 The Similarity-Matrix-Quantization-Invariance Prop erty

The Similarity-Matrix-Quantization-Invariancproperty ensures that if two bins in the
histograms have been erroneously quantized, this will fiettathe distance. Mathe-
matically we define this as:

Definition 1. LetD be a cross-bin histogram distance between two histogrraad
Q@ and let A be the bin-similarity/distance matrix. We assumg(@ and A are non-
negative and thatl is symmetric. Let;, . be thekth row of A. LetV = [V4,...,Vy]
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be a non-negative vector afid< o < 1. We defind/ kb = [ aVy, ..., V, + (1 —
@)V, ...]. Thatis,V*k? is a transformation ofVV where(1 — o)V}, mass has moved
from bink to binb. We definé® to beSimilarity-Matrix-Quantization-Invariant:

A=A, =V 0<a<1,0<3<1 DYP,Q) =D*P*", Q%"  (6)

We prove that EMD!E/WD and all the Quadratic-Chi histogram distances are
Similarity-Matrix-Quantization-Invarianin the appendix(].

4.2 The Sparseness-Invariance Property

The Sparseness-Invariangeoperty ensures that distances between sparse histograms
will be equal to distances between full histograms. Mathéerally we define this as:

Definition 2. Let D be a cross-bin histogram distance between two histogr&ns
RN and@ € RN and letA be theN x N bin similarity/distance matrix. Le#l’ be
any (N + 1) x (N + 1) matrix whose upper-left sub-matrix equals We definé to
be Sparseness-Invariaifit

D[Py, ..., P, [Q1,...,Qu]) =D ([P1,..., P, 0,[Q1, ..., Qn,0]) )

QC members, EMD and tHEMD areSparseness-Invariadtirectly from their def-
initions. A stronger property calleixtension-Invariancevas proposed by D’Agostino
and Dardanoni for bin-to-bin distances”]. This property requires that, if both his-
tograms are extended by concatenating each of them withatine sector (not nec-
essarily zeros), the distance is left unaltered. Crossiisitances assumes dependence
between histogram bins, thus this requirement is too stfontpem.

4.3 Cross-Bin Histogram Distance Properties Discussion

A Sparseness-Invariamross-bin histogram distance does not depend on the specific
representation of the histograms (full or sparse)Sinilarity-Matrix-Quantization-
Invariant cross-bin histogram distance encompass its cross-bitioreships only in

the bin-similarity matrix. Intuitively such propertieseaglesirable. In the appendix{],

we compare experimentally distances which resembles Qéngiss, but are either not
Similarity-Matrix-Quantization-Invariantr notSparseness-Invariarithe comparison
shows that these properties considerably boost perforen@specially for sparse color
histograms).

Rubner et al. 7,23] claim that one of the key advantages of the Earth Mover's
Distance is that each compared object may be represented inyli@idual (possibly
with a different number of bins) binning that is adapted $osipecific distribution. The
Quadratic-Form is regarded as not having this property f@eexample, Table 1 in
[23]). Since all the Quadratic-Chi histogram distances (idirlg the Quadratic-Form)
are bothSimilarity-Matrix-Quantization-InvariarandSparseness-Invariattiere is no
obstacle to using them with individual binninigg. to use them to compare histograms
that were adapted to each object individually.

Similarity-Matrix-Quantization-InvarianrdndSparness-Invariantan contradict.

For example, any distance applied to the transformed v@étbr= 3" (P.)A.; and
Q) = > .(Q.)A.; is Similarity-Matrix-Quantization-InvariantHowever thex? dis-
tance betwee®’ and(@)’ is notSparseness-Invariavith respect taP? andQ@).
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5 Implementation Notes

5.1 The Similarity Matrix and The Normalization Factor

It is desirable to have a transformation from a distanceimatto a similarity matrix,
as many spaces are equipped with a useful distangecolor space4]). Hafner et al.
[1] proposed this transformation:

Di]‘

A= e ()

®)

Another possibility for choosing a similarity matrix is bying cross validation.
However, we think that like for the Quadratic-Form, leamthe similarity matrix (and
for QC also the normalization factor) will be the best way tuat them. This is left
for future work. Currently we suggest to use thresholdedigdadistances as was used
in [2,25,3,14] and choosing the normalization factor by cross validation

5.2 Efficient Online Bin-Similarity Matrix Computation

For a fixed histogram configuratioa.g.SIFT, SC and IDSC) the bin-similarity matrix
can be pre-computed once. Then, each distance computatiorar in the number of
non-zero entries in the bin-similarity matrix.

There are cases where the bin-similarity matrix can not eecpmputed. For ex-
ample, in our color experiments (Sectiéri), we usedV x M color images as sparse
histograms. That is, the query histogramwas: .., 1,0, ..., 0] and each image being
compared to the query was represented by the histodéam: ,0, 1, ..., 1]. Note that
the full histogram dimension i3/ x N x 2562, computing ar{M x N x 256°)2 sim-
ilarity matrix offline is not feasible. We can compute the iamity online for each pair
of sparse histograms @ ((N M )?) time. We now discuss how to do it more efficiently.

If we are comparing two images (as in Sectii) we can use a similarity matrix
that gives far-away pixels zero similarity (see H€). Then, we can simply compare
each pixel in one image to its correspondifig< 7' spatial neighbors in the second
image. This reduces running time & N MT?). Using this technique, it is important
to use a sparse representation for the bin-similarity matri

6 Results

We present results using the newly defined distances aredaftéite art distances, for
image retrieval using SIFT-like descriptors and color imalgscriptors. In addition,
we present results for shape classification using Inneabégt Shape Context (IDSC).
More results for shape classification using SC, can be foutite appendix{(].

6.1 Image Retrieval Results

In this section we present results for image retrieval utiiegsame benchmark as Pele
and Werman14]. We employed a database that contained 773 landscape srirage
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the COREL database that were also used in Wang €i@l . The dataset has 10 classes
People in Africa, Beaches, Outdoor Buildings, Buses, Danos, Elephants, Flowers,
Horses, Mountains and Food. The number of images in each @dages from 50 to
100. From each class we selected 5 images as query imagege€ido, . .., 40).
Then we searched for the 50 nearest neighbors for each quagei We computed the
distance of each image to the query image and its reflectidnaak the minimum. We
present results for two types of image representationst-BE descriptors and small
L*a*b* images.

SIFT-like Descriptors The first representation - SIFT iséax 8 x 8 SIFT descriptor
[13] computed globally on the whole image. The second repratent- CSIFT is a
SIFT-like descriptor on a color-edge image. Se4 for more details.

We experimented with two new types of QC distances. The ﬁr@(%“ﬁ, which is
a cross-bin generalization §f 2x2, which we call Quadratic-Chi-Squared (QCS). The
second is Q€ ,, which has a larger normalization factor, which we call Qagid-Chi-
Normalized (QCN). We do not use @,leith m > 1 due to discontinuity problems,
see appendixZJ] (practically, QC{‘ had slightly poorer results compared to g‘gg
We also experimented with the Quadratic-Form (QF) distamtieh is QQj‘. For all
of these distances we used the bin-similarity matrix in &d.et M = 8 be the num-
ber of orientation bins, as in Pele and Wermai[the ground distance between bins
(Ii, Yis Oi) and(:cj, Yjs Oj) is:

dr(i,j) = min ((II(:cz-,yi) — (23, 95)|l2 +min(lo; — o;[, M — [o; — 0;])) , T) 9)

We also used the identity matrix as a similarity matrix fdrthé above distances. We
also compared td., andy2. QFf = L, and nearest neighbors gf and QCS are the
same.

/\D
We also compared to four EMD variants. The first vilddD, with D = dr (EQ.

9) as in Pele and Werma#][ The second was the; norm which is equal t(E/W355
with D equals to the Kronecker delta multiplied by two. The thir8iBT,s:[3] which is
the sum ofEMD over all the spatial cells (each spatial cell contains orientation his-
togram). The ground distance for the orientation histogremmnin(|o; —o;|, M —|o; —
0], 2) (M is the number of orientation bins). The fourth was the ENMI[}4.5] which is
EMD with L, as the ground distance. We also tried non-thresholded grdistances
(which produce non-sparse similarity matrices). Howether, results were poor. This
is in line with Pele and Werman’s findings that cross-binatises should be used with
thresholded ground distances]. Finally, we compared to the Diffusion distance pro-
posed by Ling and Okada ] and to three probabilistic based distances: Bhattaclaaryy
[17], Kullback-Leibler (KL) [18] and Jensen-Shannon (J$¥] (we added Matlab’s ep-
silon to all histogram bins when computing KL and JS throughloe paper, as they are
not well defined if there is a zero bin, without doing so accynaas very low).

! The original database contains some visually ambiguossetasuch as Africa that also con-
tains images of beaches in Africa. We used the filtered imagasdt that was downloaded
from: http://www.cs.huji.ac.il/ ~ ofirpele/FastEMD/
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For each distance measure, we present the descriptor (SBHT) with which
it performed best. The results for all the pairs of descriptand distance measures
can be found in the appendiX]]. The results are presented in FRfa) and show that

dr—2

QCN'~~= (QCN with the similarity matrix:4;; = 1 — UIT%(”—)) outperformed all
other methodsE/Ivﬁ)fT:2 ranked second. The computation of Qbﬁ% was 266
times faster thame:2, see Table in pagel2. QCN' ranked third, which shows
the importance of the normalization factor.

All cross-bin distances that use thresholded ground dissioutperformed their
bin-by-bin versions. The figure also shows tatand QF improve upofi,. QCN and
QCS which are mathematically sound combinationg®fnd QF outperformed both.

L*a*b* Images Our second type of image representation is a small L*a*b*gmaVe
resized each image &2 x 48 and converted them to L*a*b* space. The state of the art
color distance g - CIEDE2000 on L*a*b* color spacé,27]. As it is meaningful
only for small distances we threshold it (as i5,14]).

Again, we experimented with QCS, QCN and QF distances ubmpin-similarity
matrix in Eq.8. The ground distance between two pixels, y;, L;, a;, b;),
(5,5, Ly, aj, by):

(4, 5) = (@i, i) — (z5,95)|]2

do (i) = min ((s(4, 7) + Qoo ((Ls, as, bi), (Lj, a3,b5))), T1)  ifs(i,j) < T»  (10)
T1,T2 (%, ] T otherwise

This distance is similar to the one used hy]]| except that distances with spatial
difference larger than the threshdld are set to the maximum threshdg. This was
done to accelerate the online computation of the bin-shitylanatrix. The accuracy
using this distance is the same as using the distance froenalrdl Werman14]. See

appendix P0]. We also use@MD with der, 1, (Eq.10) as a ground distance. Lét, I,
be the two L*a*b* images. We also used the following distance

LiAg =) (Aoo(Ti(@,y), I2(z,y)))  Lidg = »_(min(Aoo (L (w,y), I2(,9)),T))

LoAgo = D (Aoo(Ti(@,y), I2(x,9)))*  L2AGo = »_(min(Aoo (I (2, y), I2(x,y)), T))*

QCN!, x2, Lo, L1, SIFT,s[3], EMD-L4[15], the Diffusion[L€], Bhattacharyya7],
KL [ 18] and JS 19 distances cannot be applied to L*a*b* images as they alteeit

bin-to-bin distances or applicable only to Manhattan nekso
dopy =20, 19 =5

We present results in Fig. As shown, QC& — =~ and Iﬁ/I\D?CTl:”'TF5

To

dop, — , — i
[14] distances ranked first. Q€S 5= ran 300 times faster (see Taldle How-
ever, since the computation of the bin-similarity matrixieat be offline here, the real

=20,Ty=5

d
gain is a factor of 17. The (jFOTIT distance ranked last, which shows the im-
portance of the normalization factor of the QC histogram iers.
Although a QC distance alleviates quantization problenMDEloes it better, in-
stead of matching everything to everything it finds the optimatching. EMD however,
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Fig. 3. Results for image retrieval.

(a) SIFT-like descriptors. For each distance measure, we present the descriptor
(SIFT/CSIFT) with which it performed best. The results fiitlae pairs of descriptors
and distance measures can be found in the appeiiflixihere are several key obser-

vations. First, the QC members performance is exceIIentxlede2 (QCN with the
similarity matrix: A;; = 1 — ‘”%(”)) outperformed all other distanceE.MDfT:2

ranked second, but its computation was 266 times slower(tlﬁl’NIl*dTT:2 computa-
tion (see Tabl®). Second, all cross-bin versions of the distances (witlor a transfor-
mation of it) performed better than their bin-by-bin versqwith the identity matrix
or the Kronecker delta function). Third, Q€Nanked third, although its a bin-to-bin
distance. This shows the importance of the normalizatiatofaFinally, x?> and QF
improve uponL,. However,y? does not take cross-bin relationships into account and
QF does not reduce the effect of large bins. QCS and QCN hatodistances, which
are mathematically sound combinationsidfand QF have the two properties and out-
performed both.

(b) L*a*b* images results. QCN!, x2, Ly, Li, SIFT,[3], EMD-L[15],
Diffusion[16], Bhattacharyyal 7], KL[ 18 and JS].9] distances are not applicable here.

dep) =20, T5=5 — _ -~ i dep) =20, 75 =5
QCs = andEMD " =** "= [14] ranked first. QC& — 2 compu-
tation is 300 times faster th&fMD| ™ —*™>=* without taking the bin-similarity matrix

computation into accountand 17 times faster when it is tak®raccount (see Tably.
depy —20,75=5

QFl_ 20
in QC members.

ranked last, which shows the importance of the normalingaator
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does not reduce the effect of large bins. We conjecture thatiant of EMD which will
reduce the effect of large bins will have an excellent penfamce.

6.2 Shape Classification Results

In this section we present results for shape classificatdimguthe same framework as
Ling et al. [11,1528]. We test for shape classification with the Inner Distancepfgh
Context (IDSC) [1]. The original Shape Context (SC) descriptor was proposed b
Belongie et al. [(]. Belongie et al. (] and Ling and Jacobs [|] used they? distance
for comparing shape context histograms. Ling and Okadhghowed that replacing
x2 with EMD-L, improves results. We show that QC members yields the bastses

We tested on the articulated shape data 5&Pf], that contains 40 images from 8
different objects. Each object has 5 images articulatedfferent degrees. The dataset
is very challenging because of the similarity between déffé objects. The original SC
had a very poor performance on this dataset, see appéeiidix [

Again, we experimented with QCS, QCN and QF distances witbth-similarity
matrix in Eq.8. The ground distance between two bins, 0;), (r;, 0;) was (M is the
number of orientation bins):

dser (4, 7) = min ((|di — dj| + min(Joi — o;], M — |oi — 04]),T) (1)

We also used the identity matrix as a similarity matrix, amastwe also compare 10o;.
x2 and QC$ distances are not equivalent here as the distance is nofoaisadarest
neighbors. We refer the reader to Belongie et al. paper tidsasage 10]. Practically,
QC¥' slightly outperformed,? in this task, see Table

We also compared to four EMD variamEM/TDf) with D = dsc¢r (Eqg. 11), the
Ly norm, SIFTs[3] and EMD-L4[15]. Finally, we compared to the Diffusion distance
proposed by Ling and Okad&a ] and to three probabilistic based distances: Bhat-
tacharyyal7], Kullback-Leibler (KL) [18] and Jensen-Shannon (JS}.

To evaluate results, for each image, the four most similaches are chosen from
other images in the dataset. The retrieval result is sunz@das the number of 1st,

2nd, 3rd and 4th most similar matches that come from the coolgect. Tablel shows

the retrieval results. The QCN =2 outperformed all the other methods. QEper-

formance is again excellent, which shows the importanchehbrmalization factor.

Top 1 Top 2 Top 3 Top 4 AUC% Top 1 Top 2 Top 3 Top 4 AUC%
dsop_o —

QCN'~"— 2~ 39 38 38 34 0950 EMDT=2 39 36 35 27 0.902
QCN/ 40 37 36 33 0940 L 39 35 35 25 0.890
ce-BT=2 o0 ac ag 0 ogrp  SFTowTl] 38 37 27 22 0.848
Q : EMD-L:[15] 39 35 38 30 0.917
Q,SS’ 40 34 37 27 0907 piffysion[16] 39 35 34 23 0.880
X . 40 36 36 21 0902 Bhattacharyya[7/] 40 37 32 23 0.895
_$or=2 KL[ 1] 40 38 36 29 0.938

QF'~—2 40 34 39 19 0.897
Lo 29 35 35 18 0873 9IS0Y 40 35 37 21 0.900

dsep— .
Table 1.Shape classification results. QEN L= outperformed all other distances.
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Again all cross-bin distances outperformed their bin-fryMersions. Againy? and
QF improved uporis. QCN and QCS which are mathematically sound combinations
of % and QF outperformed both.

6.3 Running Time Results

All runs were conducted on a Pentium 2.8GHz. A comparisohefiractical running
time of all distances is given in Tabz Clearly QCN and QCS distances are fast to
compute. This is consistent with their linear time compexihe only non-linear time
distances arEMD [14] and EMD-L,[15] which are also practically much slower than
the other methods. Our method can be easily paralleliz&thgadvantage of multi-
core computers or the GPU.

Descriptor QCN'2 QCN! QCS*2 QCcS X2  QF*2 L, EMDP2[14 L,  SIFTpst[3]

(SIFT) 0.15 0.1 0.07 0.014 0.013 0.05 0.011 40 0.011 0.07
(IDSC) 6.41 299 232 0.35 0.34 125 0.14 13375 0.32 0.31

Descriptor EMDZ;[15] Diffusion[16] JS[L9] KL[18] Bhattacharyyal7]

(SIFT) 40 0.27 0.088 0.048 0.015
(IDSC) 20.57 3.15 140 853 17.17

Descriptor QCN'20  QCS*20  QF420  EMDP20[14] L;AT=20 Ly Agy Lo AL Lo Agg

(L*a*b*) 20(370) 19(369) 11 (361)6000(6350)3.2 32 3.2 3.2

Table 2.(SIFT) 384-dimensional SIFT-like descriptors matchimgei(inmilliseconds.
The distances from left to right are the same as the distandéig. 3 (a) from up to
down.

(IDSC) 60-dimensional IDSC histograms matching timerticroseconds The dis-
tances from left to right are the same as the distances ire Tdbdm up to down.
(L*a*b*) 32 x 48 L*a*b* images matching time (imillisecond$. The distances from
left to right are the same as the distances in Bih) from up to down. In parentheses
is the time it takes to compute the distance and the bin-aiityilmatrix as it cannot be
computed offline.

7 Conclusions

We presented a new cross-bin distance family - the Quadedti¢QC). QC distances
have many desirable properties. Like the Quadratic-Fostogram distance they take
into account cross-bin relationships. Liké they reduce the effect of large bins. We for-
malized two new cross-bin properti€dimilarity-Matrix-Quantization-Invariancand
Sparseness -Invarianc®C members were shown to have both. Finally, QC distance



The Quadratic-Chi Histogram Distance Family 13

computation time is linear in the number of non-zero entinethe bin-similarity ma-
trix. Experimentally, QC outperformed state of the art aligtes, while having a very
short run-time.

There are several open questions that we still need to explbie first is for which
QC distances does the the triangle inequality holds for. Sdw®nd is whether we can
change the Earth Mover’s Distance so that it will also rediheeeffect of large bins.
Concave-cost network flow?P] seems to be the right direction for future work although
it presents two major obstacles. First, the concave-castmk flow optimization is NP-
hard 9. However, there are available approximatiofs,0]. Second, simply using
concave-cost flow networks will result in a distance whichd Similarity-Matrix-
Quantization-InvariantWe would also like to explore whether metric learning metho
such as $1,32,33,34,35,36,37,36] can be generalized for the Quadratic-Chi histogram
distance. Assent et al3{] have suggested methods that accelerate database retrieva
that uses Quadratic-Form distances. Generalizing thetigoaefor the Quadratic-Chi
distances is of interest. Finally, other computer visiopl@gations such as tracking
can use the QC distances. The project homepage, includidg @@++ and Matlab
wrappers) is athttp://www.cs.huji.ac.il/ ~ ofirpele/QC/
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